1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
*> \brief \b SDISNA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SDISNA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sdisna.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sdisna.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sdisna.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SDISNA( JOB, M, N, D, SEP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOB
* INTEGER INFO, M, N
* ..
* .. Array Arguments ..
* REAL D( * ), SEP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SDISNA computes the reciprocal condition numbers for the eigenvectors
*> of a real symmetric or complex Hermitian matrix or for the left or
*> right singular vectors of a general m-by-n matrix. The reciprocal
*> condition number is the 'gap' between the corresponding eigenvalue or
*> singular value and the nearest other one.
*>
*> The bound on the error, measured by angle in radians, in the I-th
*> computed vector is given by
*>
*> SLAMCH( 'E' ) * ( ANORM / SEP( I ) )
*>
*> where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed
*> to be smaller than SLAMCH( 'E' )*ANORM in order to limit the size of
*> the error bound.
*>
*> SDISNA may also be used to compute error bounds for eigenvectors of
*> the generalized symmetric definite eigenproblem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOB
*> \verbatim
*> JOB is CHARACTER*1
*> Specifies for which problem the reciprocal condition numbers
*> should be computed:
*> = 'E': the eigenvectors of a symmetric/Hermitian matrix;
*> = 'L': the left singular vectors of a general matrix;
*> = 'R': the right singular vectors of a general matrix.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> If JOB = 'L' or 'R', the number of columns of the matrix,
*> in which case N >= 0. Ignored if JOB = 'E'.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (M) if JOB = 'E'
*> dimension (min(M,N)) if JOB = 'L' or 'R'
*> The eigenvalues (if JOB = 'E') or singular values (if JOB =
*> 'L' or 'R') of the matrix, in either increasing or decreasing
*> order. If singular values, they must be non-negative.
*> \endverbatim
*>
*> \param[out] SEP
*> \verbatim
*> SEP is REAL array, dimension (M) if JOB = 'E'
*> dimension (min(M,N)) if JOB = 'L' or 'R'
*> The reciprocal condition numbers of the vectors.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup auxOTHERcomputational
*
* =====================================================================
SUBROUTINE SDISNA( JOB, M, N, D, SEP, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER JOB
INTEGER INFO, M, N
* ..
* .. Array Arguments ..
REAL D( * ), SEP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL DECR, EIGEN, INCR, LEFT, RIGHT, SING
INTEGER I, K
REAL ANORM, EPS, NEWGAP, OLDGAP, SAFMIN, THRESH
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
EIGEN = LSAME( JOB, 'E' )
LEFT = LSAME( JOB, 'L' )
RIGHT = LSAME( JOB, 'R' )
SING = LEFT .OR. RIGHT
IF( EIGEN ) THEN
K = M
ELSE IF( SING ) THEN
K = MIN( M, N )
END IF
IF( .NOT.EIGEN .AND. .NOT.SING ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( K.LT.0 ) THEN
INFO = -3
ELSE
INCR = .TRUE.
DECR = .TRUE.
DO 10 I = 1, K - 1
IF( INCR )
$ INCR = INCR .AND. D( I ).LE.D( I+1 )
IF( DECR )
$ DECR = DECR .AND. D( I ).GE.D( I+1 )
10 CONTINUE
IF( SING .AND. K.GT.0 ) THEN
IF( INCR )
$ INCR = INCR .AND. ZERO.LE.D( 1 )
IF( DECR )
$ DECR = DECR .AND. D( K ).GE.ZERO
END IF
IF( .NOT.( INCR .OR. DECR ) )
$ INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SDISNA', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( K.EQ.0 )
$ RETURN
*
* Compute reciprocal condition numbers
*
IF( K.EQ.1 ) THEN
SEP( 1 ) = SLAMCH( 'O' )
ELSE
OLDGAP = ABS( D( 2 )-D( 1 ) )
SEP( 1 ) = OLDGAP
DO 20 I = 2, K - 1
NEWGAP = ABS( D( I+1 )-D( I ) )
SEP( I ) = MIN( OLDGAP, NEWGAP )
OLDGAP = NEWGAP
20 CONTINUE
SEP( K ) = OLDGAP
END IF
IF( SING ) THEN
IF( ( LEFT .AND. M.GT.N ) .OR. ( RIGHT .AND. M.LT.N ) ) THEN
IF( INCR )
$ SEP( 1 ) = MIN( SEP( 1 ), D( 1 ) )
IF( DECR )
$ SEP( K ) = MIN( SEP( K ), D( K ) )
END IF
END IF
*
* Ensure that reciprocal condition numbers are not less than
* threshold, in order to limit the size of the error bound
*
EPS = SLAMCH( 'E' )
SAFMIN = SLAMCH( 'S' )
ANORM = MAX( ABS( D( 1 ) ), ABS( D( K ) ) )
IF( ANORM.EQ.ZERO ) THEN
THRESH = EPS
ELSE
THRESH = MAX( EPS*ANORM, SAFMIN )
END IF
DO 30 I = 1, K
SEP( I ) = MAX( SEP( I ), THRESH )
30 CONTINUE
*
RETURN
*
* End of SDISNA
*
END
|