1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
*> \brief \b SLAMTSQR
*
* Definition:
* ===========
*
* SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
* $ LDT, C, LDC, WORK, LWORK, INFO )
*
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
* ..
* .. Array Arguments ..
* DOUBLE A( LDA, * ), WORK( * ), C(LDC, * ),
* $ T( LDT, * )
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAMTSQR overwrites the general real M-by-N matrix C with
*>
*>
*> SIDE = 'L' SIDE = 'R'
*> TRANS = 'N': Q * C C * Q
*> TRANS = 'T': Q**T * C C * Q**T
*> where Q is a real orthogonal matrix defined as the product
*> of blocked elementary reflectors computed by tall skinny
*> QR factorization (DLATSQR)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**T from the Left;
*> = 'R': apply Q or Q**T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': No transpose, apply Q;
*> = 'T': Transpose, apply Q**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >=0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. M >= N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines
*> the matrix Q.
*> N >= K >= 0;
*>
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The block size to be used in the blocked QR.
*> MB > N. (must be the same as DLATSQR)
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The column block size to be used in the blocked QR.
*> N >= NB >= 1.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,K)
*> The i-th column must contain the vector which defines the
*> blockedelementary reflector H(i), for i = 1,2,...,k, as
*> returned by DLATSQR in the first k columns of
*> its array argument A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> If SIDE = 'L', LDA >= max(1,M);
*> if SIDE = 'R', LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is REAL array, dimension
*> ( N * Number of blocks(CEIL(M-K/MB-K)),
*> The blocked upper triangular block reflectors stored in compact form
*> as a sequence of upper triangular blocks. See below
*> for further details.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= NB.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) REAL array, dimension (MAX(1,LWORK))
*>
*> \endverbatim
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*>
*> If SIDE = 'L', LWORK >= max(1,N)*NB;
*> if SIDE = 'R', LWORK >= max(1,MB)*NB.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*>
*> \endverbatim
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
*> representing Q as a product of other orthogonal matrices
*> Q = Q(1) * Q(2) * . . . * Q(k)
*> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
*> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
*> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
*> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
*> . . .
*>
*> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
*> stored under the diagonal of rows 1:MB of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,1:N).
*> For more information see Further Details in GEQRT.
*>
*> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
*> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
*> The last Q(k) may use fewer rows.
*> For more information see Further Details in TPQRT.
*>
*> For more details of the overall algorithm, see the description of
*> Sequential TSQR in Section 2.2 of [1].
*>
*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
$ LDT, C, LDC, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
* ..
* .. Array Arguments ..
REAL A( LDA, * ), WORK( * ), C(LDC, * ),
$ T( LDT, * )
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
INTEGER I, II, KK, LW, CTR
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL SGEMQRT, STPMQRT, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
LQUERY = LWORK.LT.0
NOTRAN = LSAME( TRANS, 'N' )
TRAN = LSAME( TRANS, 'T' )
LEFT = LSAME( SIDE, 'L' )
RIGHT = LSAME( SIDE, 'R' )
IF (LEFT) THEN
LW = N * NB
ELSE
LW = MB * NB
END IF
*
INFO = 0
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
INFO = -1
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
INFO = -9
ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -13
ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
INFO = -15
END IF
*
* Determine the block size if it is tall skinny or short and wide
*
IF( INFO.EQ.0) THEN
WORK(1) = LW
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLAMTSQR', -INFO )
RETURN
ELSE IF (LQUERY) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN(M,N,K).EQ.0 ) THEN
RETURN
END IF
*
IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
CALL SGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
$ T, LDT, C, LDC, WORK, INFO)
RETURN
END IF
*
IF(LEFT.AND.NOTRAN) THEN
*
* Multiply Q to the last block of C
*
KK = MOD((M-K),(MB-K))
CTR = (M-K)/(MB-K)
IF (KK.GT.0) THEN
II=M-KK+1
CALL STPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
$ T(1,CTR*K+1),LDT , C(1,1), LDC,
$ C(II,1), LDC, WORK, INFO )
ELSE
II=M+1
END IF
*
DO I=II-(MB-K),MB+1,-(MB-K)
*
* Multiply Q to the current block of C (I:I+MB,1:N)
*
CTR = CTR - 1
CALL STPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
$ T(1, CTR * K + 1), LDT, C(1,1), LDC,
$ C(I,1), LDC, WORK, INFO )
*
END DO
*
* Multiply Q to the first block of C (1:MB,1:N)
*
CALL SGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
$ ,LDT ,C(1,1), LDC, WORK, INFO )
*
ELSE IF (LEFT.AND.TRAN) THEN
*
* Multiply Q to the first block of C
*
KK = MOD((M-K),(MB-K))
II=M-KK+1
CTR = 1
CALL SGEMQRT('L','T',MB , N, K, NB, A(1,1), LDA, T
$ ,LDT ,C(1,1), LDC, WORK, INFO )
*
DO I=MB+1,II-MB+K,(MB-K)
*
* Multiply Q to the current block of C (I:I+MB,1:N)
*
CALL STPMQRT('L','T',MB-K , N, K, 0,NB, A(I,1), LDA,
$ T(1,CTR * K + 1),LDT, C(1,1), LDC,
$ C(I,1), LDC, WORK, INFO )
CTR = CTR + 1
*
END DO
IF(II.LE.M) THEN
*
* Multiply Q to the last block of C
*
CALL STPMQRT('L','T',KK , N, K, 0,NB, A(II,1), LDA,
$ T(1, CTR * K + 1), LDT, C(1,1), LDC,
$ C(II,1), LDC, WORK, INFO )
*
END IF
*
ELSE IF(RIGHT.AND.TRAN) THEN
*
* Multiply Q to the last block of C
*
KK = MOD((N-K),(MB-K))
CTR = (N-K)/(MB-K)
IF (KK.GT.0) THEN
II=N-KK+1
CALL STPMQRT('R','T',M , KK, K, 0, NB, A(II,1), LDA,
$ T(1, CTR * K + 1), LDT, C(1,1), LDC,
$ C(1,II), LDC, WORK, INFO )
ELSE
II=N+1
END IF
*
DO I=II-(MB-K),MB+1,-(MB-K)
*
* Multiply Q to the current block of C (1:M,I:I+MB)
*
CTR = CTR - 1
CALL STPMQRT('R','T',M , MB-K, K, 0,NB, A(I,1), LDA,
$ T(1, CTR * K + 1), LDT, C(1,1), LDC,
$ C(1,I), LDC, WORK, INFO )
*
END DO
*
* Multiply Q to the first block of C (1:M,1:MB)
*
CALL SGEMQRT('R','T',M , MB, K, NB, A(1,1), LDA, T
$ ,LDT ,C(1,1), LDC, WORK, INFO )
*
ELSE IF (RIGHT.AND.NOTRAN) THEN
*
* Multiply Q to the first block of C
*
KK = MOD((N-K),(MB-K))
II=N-KK+1
CTR = 1
CALL SGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
$ ,LDT ,C(1,1), LDC, WORK, INFO )
*
DO I=MB+1,II-MB+K,(MB-K)
*
* Multiply Q to the current block of C (1:M,I:I+MB)
*
CALL STPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
$ T(1, CTR * K + 1),LDT, C(1,1), LDC,
$ C(1,I), LDC, WORK, INFO )
CTR = CTR + 1
*
END DO
IF(II.LE.N) THEN
*
* Multiply Q to the last block of C
*
CALL STPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
$ T(1, CTR * K + 1),LDT, C(1,1), LDC,
$ C(1,II), LDC, WORK, INFO )
*
END IF
*
END IF
*
WORK(1) = LW
RETURN
*
* End of SLAMTSQR
*
END
|