1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
*> \brief \b SORBDB5
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORBDB5 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb5.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb5.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb5.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SORBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
* LDQ2, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
* $ N
* ..
* .. Array Arguments ..
* REAL Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*>\verbatim
*>
*> SORBDB5 orthogonalizes the column vector
*> X = [ X1 ]
*> [ X2 ]
*> with respect to the columns of
*> Q = [ Q1 ] .
*> [ Q2 ]
*> The columns of Q must be orthonormal.
*>
*> If the projection is zero according to Kahan's "twice is enough"
*> criterion, then some other vector from the orthogonal complement
*> is returned. This vector is chosen in an arbitrary but deterministic
*> way.
*>
*>\endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M1
*> \verbatim
*> M1 is INTEGER
*> The dimension of X1 and the number of rows in Q1. 0 <= M1.
*> \endverbatim
*>
*> \param[in] M2
*> \verbatim
*> M2 is INTEGER
*> The dimension of X2 and the number of rows in Q2. 0 <= M2.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns in Q1 and Q2. 0 <= N.
*> \endverbatim
*>
*> \param[in,out] X1
*> \verbatim
*> X1 is REAL array, dimension (M1)
*> On entry, the top part of the vector to be orthogonalized.
*> On exit, the top part of the projected vector.
*> \endverbatim
*>
*> \param[in] INCX1
*> \verbatim
*> INCX1 is INTEGER
*> Increment for entries of X1.
*> \endverbatim
*>
*> \param[in,out] X2
*> \verbatim
*> X2 is REAL array, dimension (M2)
*> On entry, the bottom part of the vector to be
*> orthogonalized. On exit, the bottom part of the projected
*> vector.
*> \endverbatim
*>
*> \param[in] INCX2
*> \verbatim
*> INCX2 is INTEGER
*> Increment for entries of X2.
*> \endverbatim
*>
*> \param[in] Q1
*> \verbatim
*> Q1 is REAL array, dimension (LDQ1, N)
*> The top part of the orthonormal basis matrix.
*> \endverbatim
*>
*> \param[in] LDQ1
*> \verbatim
*> LDQ1 is INTEGER
*> The leading dimension of Q1. LDQ1 >= M1.
*> \endverbatim
*>
*> \param[in] Q2
*> \verbatim
*> Q2 is REAL array, dimension (LDQ2, N)
*> The bottom part of the orthonormal basis matrix.
*> \endverbatim
*>
*> \param[in] LDQ2
*> \verbatim
*> LDQ2 is INTEGER
*> The leading dimension of Q2. LDQ2 >= M2.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= N.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date July 2012
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE SORBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
$ LDQ2, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* July 2012
*
* .. Scalar Arguments ..
INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
$ N
* ..
* .. Array Arguments ..
REAL Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER CHILDINFO, I, J
* ..
* .. External Subroutines ..
EXTERNAL SORBDB6, XERBLA
* ..
* .. External Functions ..
REAL SNRM2
EXTERNAL SNRM2
* ..
* .. Intrinsic Function ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
IF( M1 .LT. 0 ) THEN
INFO = -1
ELSE IF( M2 .LT. 0 ) THEN
INFO = -2
ELSE IF( N .LT. 0 ) THEN
INFO = -3
ELSE IF( INCX1 .LT. 1 ) THEN
INFO = -5
ELSE IF( INCX2 .LT. 1 ) THEN
INFO = -7
ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
INFO = -9
ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
INFO = -11
ELSE IF( LWORK .LT. N ) THEN
INFO = -13
END IF
*
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'SORBDB5', -INFO )
RETURN
END IF
*
* Project X onto the orthogonal complement of Q
*
CALL SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, LDQ2,
$ WORK, LWORK, CHILDINFO )
*
* If the projection is nonzero, then return
*
IF( SNRM2(M1,X1,INCX1) .NE. ZERO
$ .OR. SNRM2(M2,X2,INCX2) .NE. ZERO ) THEN
RETURN
END IF
*
* Project each standard basis vector e_1,...,e_M1 in turn, stopping
* when a nonzero projection is found
*
DO I = 1, M1
DO J = 1, M1
X1(J) = ZERO
END DO
X1(I) = ONE
DO J = 1, M2
X2(J) = ZERO
END DO
CALL SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
$ LDQ2, WORK, LWORK, CHILDINFO )
IF( SNRM2(M1,X1,INCX1) .NE. ZERO
$ .OR. SNRM2(M2,X2,INCX2) .NE. ZERO ) THEN
RETURN
END IF
END DO
*
* Project each standard basis vector e_(M1+1),...,e_(M1+M2) in turn,
* stopping when a nonzero projection is found
*
DO I = 1, M2
DO J = 1, M1
X1(J) = ZERO
END DO
DO J = 1, M2
X2(J) = ZERO
END DO
X2(I) = ONE
CALL SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
$ LDQ2, WORK, LWORK, CHILDINFO )
IF( SNRM2(M1,X1,INCX1) .NE. ZERO
$ .OR. SNRM2(M2,X2,INCX2) .NE. ZERO ) THEN
RETURN
END IF
END DO
*
RETURN
*
* End of SORBDB5
*
END
|