1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
*> \brief \b SORM22 multiplies a general matrix by a banded orthogonal matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORM22 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorm22.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorm22.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorm22.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
* $ WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
* ..
* .. Array Arguments ..
* REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
* ..
*
*> \par Purpose
* ============
*>
*> \verbatim
*>
*>
*> SORM22 overwrites the general real M-by-N matrix C with
*>
*> SIDE = 'L' SIDE = 'R'
*> TRANS = 'N': Q * C C * Q
*> TRANS = 'T': Q**T * C C * Q**T
*>
*> where Q is a real orthogonal matrix of order NQ, with NQ = M if
*> SIDE = 'L' and NQ = N if SIDE = 'R'.
*> The orthogonal matrix Q processes a 2-by-2 block structure
*>
*> [ Q11 Q12 ]
*> Q = [ ]
*> [ Q21 Q22 ],
*>
*> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
*> N2-by-N2 upper triangular matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**T from the Left;
*> = 'R': apply Q or Q**T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': apply Q (No transpose);
*> = 'C': apply Q**T (Conjugate transpose).
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] N1
*> \param[in] N2
*> \verbatim
*> N1 is INTEGER
*> N2 is INTEGER
*> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
*> The following requirement must be satisfied:
*> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is REAL array, dimension
*> (LDQ,M) if SIDE = 'L'
*> (LDQ,N) if SIDE = 'R'
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q.
*> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If SIDE = 'L', LWORK >= max(1,N);
*> if SIDE = 'R', LWORK >= max(1,M).
*> For optimum performance LWORK >= M*N.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date January 2015
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
$ WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* January 2015
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
* ..
* .. Array Arguments ..
REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
*
* .. Local Scalars ..
LOGICAL LEFT, LQUERY, NOTRAN
INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SLACPY, STRMM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
NOTRAN = LSAME( TRANS, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
* NQ is the order of Q;
* NW is the minimum dimension of WORK.
*
IF( LEFT ) THEN
NQ = M
ELSE
NQ = N
END IF
NW = NQ
IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
$ THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
INFO = -5
ELSE IF( N2.LT.0 ) THEN
INFO = -6
ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
*
IF( INFO.EQ.0 ) THEN
LWKOPT = M*N
WORK( 1 ) = REAL( LWKOPT )
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SORM22', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Degenerate cases (N1 = 0 or N2 = 0) are handled using STRMM.
*
IF( N1.EQ.0 ) THEN
CALL STRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
$ Q, LDQ, C, LDC )
WORK( 1 ) = ONE
RETURN
ELSE IF( N2.EQ.0 ) THEN
CALL STRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
$ Q, LDQ, C, LDC )
WORK( 1 ) = ONE
RETURN
END IF
*
* Compute the largest chunk size available from the workspace.
*
NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
*
IF( LEFT ) THEN
IF( NOTRAN ) THEN
DO I = 1, N, NB
LEN = MIN( NB, N-I+1 )
LDWORK = M
*
* Multiply bottom part of C by Q12.
*
CALL SLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
$ N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply top part of C by Q11.
*
CALL SGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
$ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
$ LDWORK )
*
* Multiply top part of C by Q21.
*
CALL SLACPY( 'All', N2, LEN, C( 1, I ), LDC,
$ WORK( N1+1 ), LDWORK )
CALL STRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
$ N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
$ WORK( N1+1 ), LDWORK )
*
* Multiply bottom part of C by Q22.
*
CALL SGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
$ ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
$ ONE, WORK( N1+1 ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
$ LDC )
END DO
ELSE
DO I = 1, N, NB
LEN = MIN( NB, N-I+1 )
LDWORK = M
*
* Multiply bottom part of C by Q21**T.
*
CALL SLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
$ N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply top part of C by Q11**T.
*
CALL SGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
$ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
$ LDWORK )
*
* Multiply top part of C by Q12**T.
*
CALL SLACPY( 'All', N1, LEN, C( 1, I ), LDC,
$ WORK( N2+1 ), LDWORK )
CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
$ N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
$ WORK( N2+1 ), LDWORK )
*
* Multiply bottom part of C by Q22**T.
*
CALL SGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
$ ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
$ ONE, WORK( N2+1 ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
$ LDC )
END DO
END IF
ELSE
IF( NOTRAN ) THEN
DO I = 1, M, NB
LEN = MIN( NB, M-I+1 )
LDWORK = LEN
*
* Multiply right part of C by Q21.
*
CALL SLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
$ LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply left part of C by Q11.
*
CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
$ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
$ LDWORK )
*
* Multiply left part of C by Q12.
*
CALL SLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
$ WORK( 1 + N2*LDWORK ), LDWORK )
CALL STRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
$ LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
$ WORK( 1 + N2*LDWORK ), LDWORK )
*
* Multiply right part of C by Q22.
*
CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
$ ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
$ ONE, WORK( 1 + N2*LDWORK ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
$ LDC )
END DO
ELSE
DO I = 1, M, NB
LEN = MIN( NB, M-I+1 )
LDWORK = LEN
*
* Multiply right part of C by Q12**T.
*
CALL SLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
$ LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply left part of C by Q11**T.
*
CALL SGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
$ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
$ LDWORK )
*
* Multiply left part of C by Q21**T.
*
CALL SLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
$ WORK( 1 + N1*LDWORK ), LDWORK )
CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
$ LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
$ WORK( 1 + N1*LDWORK ), LDWORK )
*
* Multiply right part of C by Q22**T.
*
CALL SGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
$ ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
$ ONE, WORK( 1 + N1*LDWORK ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
$ LDC )
END DO
END IF
END IF
*
WORK( 1 ) = REAL( LWKOPT )
RETURN
*
* End of SORM22
*
END
|