1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
*> \brief \b SPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SPSTRF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spstrf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spstrf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spstrf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
*
* .. Scalar Arguments ..
* REAL TOL
* INTEGER INFO, LDA, N, RANK
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), WORK( 2*N )
* INTEGER PIV( N )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPSTRF computes the Cholesky factorization with complete
*> pivoting of a real symmetric positive semidefinite matrix A.
*>
*> The factorization has the form
*> P**T * A * P = U**T * U , if UPLO = 'U',
*> P**T * A * P = L * L**T, if UPLO = 'L',
*> where U is an upper triangular matrix and L is lower triangular, and
*> P is stored as vector PIV.
*>
*> This algorithm does not attempt to check that A is positive
*> semidefinite. This version of the algorithm calls level 3 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
*> n by n upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] PIV
*> \verbatim
*> PIV is INTEGER array, dimension (N)
*> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*> RANK is INTEGER
*> The rank of A given by the number of steps the algorithm
*> completed.
*> \endverbatim
*>
*> \param[in] TOL
*> \verbatim
*> TOL is REAL
*> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
*> will be used. The algorithm terminates at the (K-1)st step
*> if the pivot <= TOL.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (2*N)
*> Work space.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> < 0: If INFO = -K, the K-th argument had an illegal value,
*> = 0: algorithm completed successfully, and
*> > 0: the matrix A is either rank deficient with computed rank
*> as returned in RANK, or is not positive semidefinite. See
*> Section 7 of LAPACK Working Note #161 for further
*> information.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE SPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
REAL TOL
INTEGER INFO, LDA, N, RANK
CHARACTER UPLO
* ..
* .. Array Arguments ..
REAL A( LDA, * ), WORK( 2*N )
INTEGER PIV( N )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
REAL AJJ, SSTOP, STEMP
INTEGER I, ITEMP, J, JB, K, NB, PVT
LOGICAL UPPER
* ..
* .. External Functions ..
REAL SLAMCH
INTEGER ILAENV
LOGICAL LSAME, SISNAN
EXTERNAL SLAMCH, ILAENV, LSAME, SISNAN
* ..
* .. External Subroutines ..
EXTERNAL SGEMV, SPSTF2, SSCAL, SSWAP, SSYRK, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT, MAXLOC
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SPSTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Get block size
*
NB = ILAENV( 1, 'SPOTRF', UPLO, N, -1, -1, -1 )
IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
* Use unblocked code
*
CALL SPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
$ INFO )
GO TO 200
*
ELSE
*
* Initialize PIV
*
DO 100 I = 1, N
PIV( I ) = I
100 CONTINUE
*
* Compute stopping value
*
PVT = 1
AJJ = A( PVT, PVT )
DO I = 2, N
IF( A( I, I ).GT.AJJ ) THEN
PVT = I
AJJ = A( PVT, PVT )
END IF
END DO
IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
RANK = 0
INFO = 1
GO TO 200
END IF
*
* Compute stopping value if not supplied
*
IF( TOL.LT.ZERO ) THEN
SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
ELSE
SSTOP = TOL
END IF
*
*
IF( UPPER ) THEN
*
* Compute the Cholesky factorization P**T * A * P = U**T * U
*
DO 140 K = 1, N, NB
*
* Account for last block not being NB wide
*
JB = MIN( NB, N-K+1 )
*
* Set relevant part of first half of WORK to zero,
* holds dot products
*
DO 110 I = K, N
WORK( I ) = 0
110 CONTINUE
*
DO 130 J = K, K + JB - 1
*
* Find pivot, test for exit, else swap rows and columns
* Update dot products, compute possible pivots which are
* stored in the second half of WORK
*
DO 120 I = J, N
*
IF( J.GT.K ) THEN
WORK( I ) = WORK( I ) + A( J-1, I )**2
END IF
WORK( N+I ) = A( I, I ) - WORK( I )
*
120 CONTINUE
*
IF( J.GT.1 ) THEN
ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
PVT = ITEMP + J - 1
AJJ = WORK( N+PVT )
IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
A( J, J ) = AJJ
GO TO 190
END IF
END IF
*
IF( J.NE.PVT ) THEN
*
* Pivot OK, so can now swap pivot rows and columns
*
A( PVT, PVT ) = A( J, J )
CALL SSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
IF( PVT.LT.N )
$ CALL SSWAP( N-PVT, A( J, PVT+1 ), LDA,
$ A( PVT, PVT+1 ), LDA )
CALL SSWAP( PVT-J-1, A( J, J+1 ), LDA,
$ A( J+1, PVT ), 1 )
*
* Swap dot products and PIV
*
STEMP = WORK( J )
WORK( J ) = WORK( PVT )
WORK( PVT ) = STEMP
ITEMP = PIV( PVT )
PIV( PVT ) = PIV( J )
PIV( J ) = ITEMP
END IF
*
AJJ = SQRT( AJJ )
A( J, J ) = AJJ
*
* Compute elements J+1:N of row J.
*
IF( J.LT.N ) THEN
CALL SGEMV( 'Trans', J-K, N-J, -ONE, A( K, J+1 ),
$ LDA, A( K, J ), 1, ONE, A( J, J+1 ),
$ LDA )
CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
END IF
*
130 CONTINUE
*
* Update trailing matrix, J already incremented
*
IF( K+JB.LE.N ) THEN
CALL SSYRK( 'Upper', 'Trans', N-J+1, JB, -ONE,
$ A( K, J ), LDA, ONE, A( J, J ), LDA )
END IF
*
140 CONTINUE
*
ELSE
*
* Compute the Cholesky factorization P**T * A * P = L * L**T
*
DO 180 K = 1, N, NB
*
* Account for last block not being NB wide
*
JB = MIN( NB, N-K+1 )
*
* Set relevant part of first half of WORK to zero,
* holds dot products
*
DO 150 I = K, N
WORK( I ) = 0
150 CONTINUE
*
DO 170 J = K, K + JB - 1
*
* Find pivot, test for exit, else swap rows and columns
* Update dot products, compute possible pivots which are
* stored in the second half of WORK
*
DO 160 I = J, N
*
IF( J.GT.K ) THEN
WORK( I ) = WORK( I ) + A( I, J-1 )**2
END IF
WORK( N+I ) = A( I, I ) - WORK( I )
*
160 CONTINUE
*
IF( J.GT.1 ) THEN
ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
PVT = ITEMP + J - 1
AJJ = WORK( N+PVT )
IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
A( J, J ) = AJJ
GO TO 190
END IF
END IF
*
IF( J.NE.PVT ) THEN
*
* Pivot OK, so can now swap pivot rows and columns
*
A( PVT, PVT ) = A( J, J )
CALL SSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
IF( PVT.LT.N )
$ CALL SSWAP( N-PVT, A( PVT+1, J ), 1,
$ A( PVT+1, PVT ), 1 )
CALL SSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ),
$ LDA )
*
* Swap dot products and PIV
*
STEMP = WORK( J )
WORK( J ) = WORK( PVT )
WORK( PVT ) = STEMP
ITEMP = PIV( PVT )
PIV( PVT ) = PIV( J )
PIV( J ) = ITEMP
END IF
*
AJJ = SQRT( AJJ )
A( J, J ) = AJJ
*
* Compute elements J+1:N of column J.
*
IF( J.LT.N ) THEN
CALL SGEMV( 'No Trans', N-J, J-K, -ONE,
$ A( J+1, K ), LDA, A( J, K ), LDA, ONE,
$ A( J+1, J ), 1 )
CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
END IF
*
170 CONTINUE
*
* Update trailing matrix, J already incremented
*
IF( K+JB.LE.N ) THEN
CALL SSYRK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
$ A( J, K ), LDA, ONE, A( J, J ), LDA )
END IF
*
180 CONTINUE
*
END IF
END IF
*
* Ran to completion, A has full rank
*
RANK = N
*
GO TO 200
190 CONTINUE
*
* Rank is the number of steps completed. Set INFO = 1 to signal
* that the factorization cannot be used to solve a system.
*
RANK = J - 1
INFO = 1
*
200 CONTINUE
RETURN
*
* End of SPSTRF
*
END
|