File: zlanhp.f

package info (click to toggle)
lapack 3.9.0-3%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,592 kB
  • sloc: fortran: 593,288; ansic: 185,421; makefile: 4,884; sh: 318; python: 268
file content (291 lines) | stat: -rw-r--r-- 9,011 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
*> \brief \b ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLANHP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhp.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
*
*       .. Scalar Arguments ..
*       CHARACTER          NORM, UPLO
*       INTEGER            N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   WORK( * )
*       COMPLEX*16         AP( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLANHP  returns the value of the one norm,  or the Frobenius norm, or
*> the  infinity norm,  or the  element of  largest absolute value  of a
*> complex hermitian matrix A,  supplied in packed form.
*> \endverbatim
*>
*> \return ZLANHP
*> \verbatim
*>
*>    ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*>             (
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
*>             (
*>             ( normI(A),         NORM = 'I' or 'i'
*>             (
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*>
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies the value to be returned in ZLANHP as described
*>          above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          hermitian matrix A is supplied.
*>          = 'U':  Upper triangular part of A is supplied
*>          = 'L':  Lower triangular part of A is supplied
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHP is
*>          set to zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*>          The upper or lower triangle of the hermitian matrix A, packed
*>          columnwise in a linear array.  The j-th column of A is stored
*>          in the array AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*>          Note that the  imaginary parts of the diagonal elements need
*>          not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*>          WORK is not referenced.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERauxiliary
*
*  =====================================================================
      DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
      IMPLICIT NONE
*     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   WORK( * )
      COMPLEX*16         AP( * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      DOUBLE PRECISION   ABSA, SUM, VALUE
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      EXTERNAL           LSAME, DISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASSQ, DCOMBSSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            K = 0
            DO 20 J = 1, N
               DO 10 I = K + 1, K + J - 1
                  SUM = ABS( AP( I ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   10          CONTINUE
               K = K + J
               SUM = ABS( DBLE( AP( K ) ) )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   20       CONTINUE
         ELSE
            K = 1
            DO 40 J = 1, N
               SUM = ABS( DBLE( AP( K ) ) )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
               DO 30 I = K + 1, K + N - J
                  SUM = ABS( AP( I ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   30          CONTINUE
               K = K + N - J + 1
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
     $         ( NORM.EQ.'1' ) ) THEN
*
*        Find normI(A) ( = norm1(A), since A is hermitian).
*
         VALUE = ZERO
         K = 1
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               DO 50 I = 1, J - 1
                  ABSA = ABS( AP( K ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
                  K = K + 1
   50          CONTINUE
               WORK( J ) = SUM + ABS( DBLE( AP( K ) ) )
               K = K + 1
   60       CONTINUE
            DO 70 I = 1, N
               SUM = WORK( I )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( DBLE( AP( K ) ) )
               K = K + 1
               DO 90 I = J + 1, N
                  ABSA = ABS( AP( K ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
                  K = K + 1
   90          CONTINUE
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*        SSQ(1) is scale
*        SSQ(2) is sum-of-squares
*        For better accuracy, sum each column separately.
*
         SSQ( 1 ) = ZERO
         SSQ( 2 ) = ONE
*
*        Sum off-diagonals
*
         K = 2
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 2, N
               COLSSQ( 1 ) = ZERO
               COLSSQ( 2 ) = ONE
               CALL ZLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
               CALL DCOMBSSQ( SSQ, COLSSQ )
               K = K + J
  110       CONTINUE
         ELSE
            DO 120 J = 1, N - 1
               COLSSQ( 1 ) = ZERO
               COLSSQ( 2 ) = ONE
               CALL ZLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
               CALL DCOMBSSQ( SSQ, COLSSQ )
               K = K + N - J + 1
  120       CONTINUE
         END IF
         SSQ( 2 ) = 2*SSQ( 2 )
*
*        Sum diagonal
*
         K = 1
         COLSSQ( 1 ) = ZERO
         COLSSQ( 2 ) = ONE
         DO 130 I = 1, N
            IF( DBLE( AP( K ) ).NE.ZERO ) THEN
               ABSA = ABS( DBLE( AP( K ) ) )
               IF( COLSSQ( 1 ).LT.ABSA ) THEN
                  COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
                  COLSSQ( 1 ) = ABSA
               ELSE
                  COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
               END IF
            END IF
            IF( LSAME( UPLO, 'U' ) ) THEN
               K = K + I + 1
            ELSE
               K = K + N - I + 1
            END IF
  130    CONTINUE
         CALL DCOMBSSQ( SSQ, COLSSQ )
         VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
      END IF
*
      ZLANHP = VALUE
      RETURN
*
*     End of ZLANHP
*
      END