1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
*> \brief \b ZPPTRI
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZPPTRI + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptri.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptri.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptri.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZPPTRI( UPLO, N, AP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* COMPLEX*16 AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZPPTRI computes the inverse of a complex Hermitian positive definite
*> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
*> computed by ZPPTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangular factor is stored in AP;
*> = 'L': Lower triangular factor is stored in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*> On entry, the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H, packed columnwise as
*> a linear array. The j-th column of U or L is stored in the
*> array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
*>
*> On exit, the upper or lower triangle of the (Hermitian)
*> inverse of A, overwriting the input factor U or L.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the (i,i) element of the factor U or L is
*> zero, and the inverse could not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
* =====================================================================
SUBROUTINE ZPPTRI( UPLO, N, AP, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
COMPLEX*16 AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JC, JJ, JJN
DOUBLE PRECISION AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX*16 ZDOTC
EXTERNAL LSAME, ZDOTC
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL, ZHPR, ZTPMV, ZTPTRI
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZPPTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Invert the triangular Cholesky factor U or L.
*
CALL ZTPTRI( UPLO, 'Non-unit', N, AP, INFO )
IF( INFO.GT.0 )
$ RETURN
IF( UPPER ) THEN
*
* Compute the product inv(U) * inv(U)**H.
*
JJ = 0
DO 10 J = 1, N
JC = JJ + 1
JJ = JJ + J
IF( J.GT.1 )
$ CALL ZHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
AJJ = AP( JJ )
CALL ZDSCAL( J, AJJ, AP( JC ), 1 )
10 CONTINUE
*
ELSE
*
* Compute the product inv(L)**H * inv(L).
*
JJ = 1
DO 20 J = 1, N
JJN = JJ + N - J + 1
AP( JJ ) = DBLE( ZDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), 1 ) )
IF( J.LT.N )
$ CALL ZTPMV( 'Lower', 'Conjugate transpose', 'Non-unit',
$ N-J, AP( JJN ), AP( JJ+1 ), 1 )
JJ = JJN
20 CONTINUE
END IF
*
RETURN
*
* End of ZPPTRI
*
END
|