1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
*> \brief \b ZPTCON
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZPTCON + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptcon.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptcon.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptcon.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, N
* DOUBLE PRECISION ANORM, RCOND
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), RWORK( * )
* COMPLEX*16 E( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZPTCON computes the reciprocal of the condition number (in the
*> 1-norm) of a complex Hermitian positive definite tridiagonal matrix
*> using the factorization A = L*D*L**H or A = U**H*D*U computed by
*> ZPTTRF.
*>
*> Norm(inv(A)) is computed by a direct method, and the reciprocal of
*> the condition number is computed as
*> RCOND = 1 / (ANORM * norm(inv(A))).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The n diagonal elements of the diagonal matrix D from the
*> factorization of A, as computed by ZPTTRF.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX*16 array, dimension (N-1)
*> The (n-1) off-diagonal elements of the unit bidiagonal factor
*> U or L from the factorization of A, as computed by ZPTTRF.
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*> ANORM is DOUBLE PRECISION
*> The 1-norm of the original matrix A.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> The reciprocal of the condition number of the matrix A,
*> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
*> 1-norm of inv(A) computed in this routine.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16PTcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The method used is described in Nicholas J. Higham, "Efficient
*> Algorithms for Computing the Condition Number of a Tridiagonal
*> Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, N
DOUBLE PRECISION ANORM, RCOND
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), RWORK( * )
COMPLEX*16 E( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IX
DOUBLE PRECISION AINVNM
* ..
* .. External Functions ..
INTEGER IDAMAX
EXTERNAL IDAMAX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZPTCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
* Check that D(1:N) is positive.
*
DO 10 I = 1, N
IF( D( I ).LE.ZERO )
$ RETURN
10 CONTINUE
*
* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
* m(i,j) = abs(A(i,j)), i = j,
* m(i,j) = -abs(A(i,j)), i .ne. j,
*
* and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**H.
*
* Solve M(L) * x = e.
*
RWORK( 1 ) = ONE
DO 20 I = 2, N
RWORK( I ) = ONE + RWORK( I-1 )*ABS( E( I-1 ) )
20 CONTINUE
*
* Solve D * M(L)**H * x = b.
*
RWORK( N ) = RWORK( N ) / D( N )
DO 30 I = N - 1, 1, -1
RWORK( I ) = RWORK( I ) / D( I ) + RWORK( I+1 )*ABS( E( I ) )
30 CONTINUE
*
* Compute AINVNM = max(x(i)), 1<=i<=n.
*
IX = IDAMAX( N, RWORK, 1 )
AINVNM = ABS( RWORK( IX ) )
*
* Compute the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
RETURN
*
* End of ZPTCON
*
END
|