| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 
 | .TH DGERQ2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DGERQ2 - compute an RQ factorization of a real m by n matrix A
.SH SYNOPSIS
.TP 19
SUBROUTINE DGERQ2(
M, N, A, LDA, TAU, WORK, INFO )
.TP 19
.ti +4
INTEGER
INFO, LDA, M, N
.TP 19
.ti +4
DOUBLE
PRECISION A( LDA, * ), TAU( * ), WORK( * )
.SH PURPOSE
DGERQ2 computes an RQ factorization of a real m by n matrix A: A = R * Q.
.br
.SH ARGUMENTS
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix A.  N >= 0.
.TP 8
A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,M).
.TP 8
TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
.TP 8
WORK    (workspace) DOUBLE PRECISION array, dimension (M)
.TP 8
INFO    (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.SH FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
   Q = H(1) H(2) . . . H(k), where k = min(m,n).
.br
Each H(i) has the form
.br
   H(i) = I - tau * v * v'
.br
where tau is a real scalar, and v is a real vector with
.br
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
.br
 |