| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 
 | .TH SGETRF l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SGETRF - compute an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
.SH SYNOPSIS
.TP 19
SUBROUTINE SGETRF(
M, N, A, LDA, IPIV, INFO )
.TP 19
.ti +4
INTEGER
INFO, LDA, M, N
.TP 19
.ti +4
INTEGER
IPIV( * )
.TP 19
.ti +4
REAL
A( LDA, * )
.SH PURPOSE
SGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. 
The factorization has the form
.br
   A = P * L * U
.br
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
.br
This is the right-looking Level 3 BLAS version of the algorithm.
.SH ARGUMENTS
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix A.  N >= 0.
.TP 8
A       (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,M).
.TP 8
IPIV    (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  if INFO = i, U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
 |