File: dgttrs.f

package info (click to toggle)
lapack99 3.0-11
  • links: PTS
  • area: main
  • in suites: woody
  • size: 37,008 kB
  • ctags: 32,715
  • sloc: fortran: 436,304; makefile: 1,571; sh: 28
file content (141 lines) | stat: -rw-r--r-- 4,232 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      SUBROUTINE DGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB,
     $                   INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  Purpose
*  =======
*
*  DGTTRS solves one of the systems of equations
*     A*X = B  or  A'*X = B,
*  with a tridiagonal matrix A using the LU factorization computed
*  by DGTTRF.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER
*          Specifies the form of the system of equations.
*          = 'N':  A * X = B  (No transpose)
*          = 'T':  A'* X = B  (Transpose)
*          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  DL      (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) multipliers that define the matrix L from the
*          LU factorization of A.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the upper triangular matrix U from
*          the LU factorization of A.
*
*  DU      (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) elements of the first super-diagonal of U.
*
*  DU2     (input) DOUBLE PRECISION array, dimension (N-2)
*          The (n-2) elements of the second super-diagonal of U.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          On entry, the matrix of right hand side vectors B.
*          On exit, B is overwritten by the solution vectors X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            NOTRAN
      INTEGER            ITRANS, J, JB, NB
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGTTS2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOTRAN = ( TRANS.EQ.'N' .OR. TRANS.EQ.'n' )
      IF( .NOT.NOTRAN .AND. .NOT.( TRANS.EQ.'T' .OR. TRANS.EQ.
     $    't' ) .AND. .NOT.( TRANS.EQ.'C' .OR. TRANS.EQ.'c' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGTTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
*     Decode TRANS
*
      IF( NOTRAN ) THEN
         ITRANS = 0
      ELSE
         ITRANS = 1
      END IF
*
*     Determine the number of right-hand sides to solve at a time.
*
      IF( NRHS.EQ.1 ) THEN
         NB = 1
      ELSE
         NB = MAX( 1, ILAENV( 1, 'DGTTRS', TRANS, N, NRHS, -1, -1 ) )
      END IF
*
      IF( NB.GE.NRHS ) THEN
         CALL DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
      ELSE
         DO 10 J = 1, NRHS, NB
            JB = MIN( NRHS-J+1, NB )
            CALL DGTTS2( ITRANS, N, JB, DL, D, DU, DU2, IPIV, B( 1, J ),
     $                   LDB )
   10    CONTINUE
      END IF
*
*     End of DGTTRS
*
      END