File: slasq3.f

package info (click to toggle)
lapack99 3.0-11
  • links: PTS
  • area: main
  • in suites: woody
  • size: 37,008 kB
  • ctags: 32,715
  • sloc: fortran: 436,304; makefile: 1,571; sh: 28
file content (278 lines) | stat: -rw-r--r-- 7,478 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
      SUBROUTINE SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
     $                   ITER, NDIV )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
      REAL               DESIG, DMIN, QMAX, SIGMA
*     ..
*     .. Array Arguments ..
      REAL               Z( * )
*     ..
*
*  Purpose
*  =======
*  SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
*  In case of failure it changes shifts, and tries again until output
*  is positive.
*
*  Arguments
*  =========
*
*  I0     (input) INTEGER
*         First index.
*
*  N0     (input) INTEGER
*         Last index.
*
*  Z      (input) REAL array, dimension ( 4*N )
*         Z holds the qd array.
*
*  PP     (input) INTEGER
*         PP=0 for ping, PP=1 for pong.
*
*  DMIN   (output) REAL
*         Minimum value of d.
*
*  SIGMA  (output) REAL
*         Sum of shifts used in current segment.
*
*  DESIG  (input/output) REAL
*         Lower order part of SIGMA
*
*  QMAX   (input) REAL
*         Maximum value of q.
*
*  NFAIL  (output) INTEGER
*         Number of times shift was too big.
*
*  ITER   (output) INTEGER
*         Number of iterations.
*
*  NDIV   (output) INTEGER
*         Number of divisions.
*
*  TTYPE  (output) INTEGER
*         Shift type.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               CBIAS
      PARAMETER          ( CBIAS = 1.50E0 )
      REAL               ZERO, QURTR, HALF, ONE, TWO, TEN
      PARAMETER          ( ZERO = 0.0E0, QURTR = 0.250E0, HALF = 0.5E0,
     $                   ONE = 1.0E0, TWO = 2.0E0, TEN = 10.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IPN4, J4, N0IN, NN, TTYPE
      REAL               DMIN1, DMIN2, DN, DN1, DN2, EPS, EPS2, S,
     $                   SFMIN, T, TAU, TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASQ4, SLASQ5, SLASQ6
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Save statement ..
      SAVE               TTYPE, DMIN1, DMIN2, DN, DN1, DN2, TAU
*     ..
*     .. Data statements ..
      DATA               TTYPE / 0 /
      DATA               DMIN1 / ZERO / , DMIN2 / ZERO / , DN / ZERO / ,
     $                   DN1 / ZERO / , DN2 / ZERO / , TAU / ZERO /
*     ..
*     .. Executable Statements ..
*
      N0IN = N0
      EPS = SLAMCH( 'Precision' )*TEN
      SFMIN = SLAMCH( 'Safe minimum' )
      EPS2 = EPS**2
*
*     Check for deflation.
*
   10 CONTINUE
*
      IF( N0.LT.I0 )
     $   RETURN
      IF( N0.EQ.I0 )
     $   GO TO 20
      NN = 4*N0 + PP
      IF( N0.EQ.( I0+1 ) )
     $   GO TO 40
*
*     Check whether E(N0-1) is negligible, 1-by-1 case.
*
      IF( Z( NN-5 ).GT.EPS2*( SIGMA+Z( NN-3 ) ) .AND. Z( NN-2*PP-4 ).GT.
     $    EPS2*Z( NN-7 ) )GO TO 30
*
   20 CONTINUE
*
      Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
      N0 = N0 - 1
      GO TO 10
*
*     Check  whether E(N0-2) is negligible, 2-by-2 case.
*
   30 CONTINUE
*
      IF( Z( NN-9 ).GT.EPS2*SIGMA .AND. Z( NN-2*PP-8 ).GT.EPS2*
     $    Z( NN-11 ) )GO TO 50
*
   40 CONTINUE
*
      IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
         S = Z( NN-3 )
         Z( NN-3 ) = Z( NN-7 )
         Z( NN-7 ) = S
      END IF
      IF( Z( NN-5 ).GT.Z( NN-3 )*EPS2 ) THEN
         T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
         S = Z( NN-3 )*( Z( NN-5 ) / T )
         IF( S.LE.T ) THEN
            S = Z( NN-3 )*( Z( NN-5 ) / ( T*( ONE+SQRT( ONE+S /
     $          T ) ) ) )
         ELSE
            S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
         END IF
         T = Z( NN-7 ) + ( S+Z( NN-5 ) )
         Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
         Z( NN-7 ) = T
      END IF
      Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
      Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
      N0 = N0 - 2
      GO TO 10
*
   50 CONTINUE
*
*     Reverse the qd-array, if warranted.
*
      IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
         IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
            IPN4 = 4*( I0+N0 )
            DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
               TEMP = Z( J4-3 )
               Z( J4-3 ) = Z( IPN4-J4-3 )
               Z( IPN4-J4-3 ) = TEMP
               TEMP = Z( J4-2 )
               Z( J4-2 ) = Z( IPN4-J4-2 )
               Z( IPN4-J4-2 ) = TEMP
               TEMP = Z( J4-1 )
               Z( J4-1 ) = Z( IPN4-J4-5 )
               Z( IPN4-J4-5 ) = TEMP
               TEMP = Z( J4 )
               Z( J4 ) = Z( IPN4-J4-4 )
               Z( IPN4-J4-4 ) = TEMP
   60       CONTINUE
            IF( N0-I0.LE.4 ) THEN
               Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
               Z( 4*N0-PP ) = Z( 4*I0-PP )
            END IF
            DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
            Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
     $                       Z( 4*I0+PP+3 ) )
            Z( 4*I0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
     $                     Z( 4*I0-PP+4 ) )
            QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
            DMIN = -ZERO
         END IF
      END IF
*
   70 CONTINUE
*
      IF( DMIN.LT.ZERO .OR. SFMIN*QMAX.LE.
     $    MIN( Z( 4*N0+PP-1 ), Z( 4*N0+PP-9 ), DMIN2+Z( 4*N0-PP ) ) )
     $     THEN
*
*        Choose a shift.
*
         CALL SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
     $                DN2, TAU, TTYPE )
*
*        Call dqds until DMIN > 0.
*
   80    CONTINUE
*
         CALL SLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN, DN1,
     $                DN2 )
*
         ITER = ITER + 1
         NDIV = NDIV + ( N0-I0+2 )
*
*        Check for NaN: "DMIN.NE.DMIN"
*
         IF( DMIN.NE.DMIN ) THEN
            Z( 4*N0+PP-1 ) = ZERO
            TAU = ZERO
            GO TO 70
         END IF
*
*        Check for convergence hidden by negative DN.
*
         IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
     $       Z( 4*( N0-1 )-PP ).LT.EPS*( SIGMA+DN1 ) .AND. ABS( DN ).LT.
     $       EPS*SIGMA ) THEN
            Z( 4*( N0-1 )-PP+2 ) = ZERO
            DMIN = ABS( DMIN )
         END IF
*
         IF( DMIN.LT.ZERO ) THEN
*
*           Failure. Select new TAU and try again.
*
            NFAIL = NFAIL + 1
*
*           Failed twice. Play it safe.
*
            IF( TTYPE.LT.-22 ) THEN
               TAU = ZERO
               GO TO 80
            END IF
*
            IF( DMIN1.GT.ZERO ) THEN
*
*              Late failure. Gives excellent shift.
*
               TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
               TTYPE = TTYPE - 11
            ELSE
*
*              Early failure. Divide by 4.
*
               TAU = QURTR*TAU
               TTYPE = TTYPE - 12
            END IF
            GO TO 80
         END IF
      ELSE
         CALL SLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
         ITER = ITER + 1
         NDIV = NDIV + ( N0-I0 )
         TAU = ZERO
      END IF
*
      IF( TAU.LT.SIGMA ) THEN
         DESIG = DESIG + TAU
         T = SIGMA + DESIG
         DESIG = DESIG - ( T-SIGMA )
      ELSE
         T = SIGMA + TAU
         DESIG = SIGMA - ( T-TAU ) + DESIG
      END IF
      SIGMA = T
*
      RETURN
*
*     End of SLASQ3
*
      END