1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
SUBROUTINE CPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KD, LDA, LDB, LDX, N, NRHS
REAL RESID
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * )
* ..
*
* Purpose
* =======
*
* CPBT02 computes the residual for a solution of a Hermitian banded
* system of equations A*x = b:
* RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS)
* where EPS is the machine precision.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* KD (input) INTEGER
* The number of super-diagonals of the matrix A if UPLO = 'U',
* or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The original Hermitian band matrix A. If UPLO = 'U', the
* upper triangular part of A is stored as a band matrix; if
* UPLO = 'L', the lower triangular part of A is stored. The
* columns of the appropriate triangle are stored in the columns
* of A and the diagonals of the triangle are stored in the rows
* of A. See CPBTRF for further details.
*
* LDA (input) INTEGER.
* The leading dimension of the array A. LDA >= max(1,KD+1).
*
* X (input) COMPLEX array, dimension (LDX,NRHS)
* The computed solution vectors for the system of linear
* equations.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the right hand side vectors for the system of
* linear equations.
* On exit, B is overwritten with the difference B - A*X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* The maximum over the number of right hand sides of
* norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER J
REAL ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
REAL CLANHB, SCASUM, SLAMCH
EXTERNAL CLANHB, SCASUM, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CHBMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0 or NRHS = 0.
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute B - A*X
*
DO 10 J = 1, NRHS
CALL CHBMV( UPLO, N, KD, -CONE, A, LDA, X( 1, J ), 1, CONE,
$ B( 1, J ), 1 )
10 CONTINUE
*
* Compute the maximum over the number of right hand sides of
* norm( B - A*X ) / ( norm(A) * norm(X) * EPS )
*
RESID = ZERO
DO 20 J = 1, NRHS
BNORM = SCASUM( N, B( 1, J ), 1 )
XNORM = SCASUM( N, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
END IF
20 CONTINUE
*
RETURN
*
* End of CPBT02
*
END
|