File: cptt02.f

package info (click to toggle)
lapack99 3.0-11
  • links: PTS
  • area: main
  • in suites: woody
  • size: 37,008 kB
  • ctags: 32,715
  • sloc: fortran: 436,304; makefile: 1,571; sh: 28
file content (127 lines) | stat: -rw-r--r-- 3,638 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
      SUBROUTINE CPTT02( UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDB, LDX, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      COMPLEX            B( LDB, * ), E( * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CPTT02 computes the residual for the solution to a symmetric
*  tridiagonal system of equations:
*     RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
*  where EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the superdiagonal or the subdiagonal of the
*          tridiagonal matrix A is stored.
*          = 'U':  E is the superdiagonal of A
*          = 'L':  E is the subdiagonal of A
*
*  N       (input) INTEGTER
*          The order of the matrix A.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices B and X.  NRHS >= 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix A.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          The (n-1) subdiagonal elements of the tridiagonal matrix A.
*
*  X       (input) COMPLEX array, dimension (LDX,NRHS)
*          The n by nrhs matrix of solution vectors X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the n by nrhs matrix of right hand side vectors B.
*          On exit, B is overwritten with the difference B - A*X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  RESID   (output) REAL
*          norm(B - A*X) / (norm(A) * norm(X) * EPS)
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      REAL               CLANHT, SCASUM, SLAMCH
      EXTERNAL           CLANHT, SCASUM, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAPTM
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute the 1-norm of the tridiagonal matrix A.
*
      ANORM = CLANHT( '1', N, D, E )
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute B - A*X.
*
      CALL CLAPTM( UPLO, N, NRHS, -ONE, D, E, X, LDX, ONE, B, LDB )
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         BNORM = SCASUM( N, B( 1, J ), 1 )
         XNORM = SCASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of CPTT02
*
      END