1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  
     | 
    
            SUBROUTINE DPPT05( UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT,
     $                   LDXACT, FERR, BERR, RESLTS )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDB, LDX, LDXACT, N, NRHS
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
     $                   RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
*     ..
*
*  Purpose
*  =======
*
*  DPPT05 tests the error bounds from iterative refinement for the
*  computed solution to a system of equations A*X = B, where A is a
*  symmetric matrix in packed storage format.
*
*  RESLTS(1) = test of the error bound
*            = norm(X - XACT) / ( norm(X) * FERR )
*
*  A large value is returned if this ratio is not less than one.
*
*  RESLTS(2) = residual from the iterative refinement routine
*            = the maximum of BERR / ( (n+1)*EPS + (*) ), where
*              (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows of the matrices X, B, and XACT, and the
*          order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of the matrices X, B, and XACT.
*          NRHS >= 0.
*
*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The upper or lower triangle of the symmetric matrix A, packed
*          columnwise in a linear array.  The j-th column of A is stored
*          in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          The right hand side vectors for the system of linear
*          equations.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
*          The computed solution vectors.  Each vector is stored as a
*          column of the matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  XACT    (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
*          The exact solution vectors.  Each vector is stored as a
*          column of the matrix XACT.
*
*  LDXACT  (input) INTEGER
*          The leading dimension of the array XACT.  LDXACT >= max(1,N).
*
*  FERR    (input) DOUBLE PRECISION array, dimension (NRHS)
*          The estimated forward error bounds for each solution vector
*          X.  If XTRUE is the true solution, FERR bounds the magnitude
*          of the largest entry in (X - XTRUE) divided by the magnitude
*          of the largest entry in X.
*
*  BERR    (input) DOUBLE PRECISION array, dimension (NRHS)
*          The componentwise relative backward error of each solution
*          vector (i.e., the smallest relative change in any entry of A
*          or B that makes X an exact solution).
*
*  RESLTS  (output) DOUBLE PRECISION array, dimension (2)
*          The maximum over the NRHS solution vectors of the ratios:
*          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
*          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IMAX, J, JC, K
      DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, IDAMAX, DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0.
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESLTS( 1 ) = ZERO
         RESLTS( 2 ) = ZERO
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      UPPER = LSAME( UPLO, 'U' )
*
*     Test 1:  Compute the maximum of
*        norm(X - XACT) / ( norm(X) * FERR )
*     over all the vectors X and XACT using the infinity-norm.
*
      ERRBND = ZERO
      DO 30 J = 1, NRHS
         IMAX = IDAMAX( N, X( 1, J ), 1 )
         XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
         DIFF = ZERO
         DO 10 I = 1, N
            DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
   10    CONTINUE
*
         IF( XNORM.GT.ONE ) THEN
            GO TO 20
         ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
            GO TO 20
         ELSE
            ERRBND = ONE / EPS
            GO TO 30
         END IF
*
   20    CONTINUE
         IF( DIFF / XNORM.LE.FERR( J ) ) THEN
            ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
         ELSE
            ERRBND = ONE / EPS
         END IF
   30 CONTINUE
      RESLTS( 1 ) = ERRBND
*
*     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
*     (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*
      DO 90 K = 1, NRHS
         DO 80 I = 1, N
            TMP = ABS( B( I, K ) )
            IF( UPPER ) THEN
               JC = ( ( I-1 )*I ) / 2
               DO 40 J = 1, I
                  TMP = TMP + ABS( AP( JC+J ) )*ABS( X( J, K ) )
   40          CONTINUE
               JC = JC + I
               DO 50 J = I + 1, N
                  TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
                  JC = JC + J
   50          CONTINUE
            ELSE
               JC = I
               DO 60 J = 1, I - 1
                  TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
                  JC = JC + N - J
   60          CONTINUE
               DO 70 J = I, N
                  TMP = TMP + ABS( AP( JC+J-I ) )*ABS( X( J, K ) )
   70          CONTINUE
            END IF
            IF( I.EQ.1 ) THEN
               AXBI = TMP
            ELSE
               AXBI = MIN( AXBI, TMP )
            END IF
   80    CONTINUE
         TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
     $         MAX( AXBI, ( N+1 )*UNFL ) )
         IF( K.EQ.1 ) THEN
            RESLTS( 2 ) = TMP
         ELSE
            RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
         END IF
   90 CONTINUE
*
      RETURN
*
*     End of DPPT05
*
      END
 
     |