File: dqrt14.f

package info (click to toggle)
lapack99 3.0-11
  • links: PTS
  • area: main
  • in suites: woody
  • size: 37,008 kB
  • ctags: 32,715
  • sloc: fortran: 436,304; makefile: 1,571; sh: 28
file content (192 lines) | stat: -rw-r--r-- 5,790 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
      DOUBLE PRECISION FUNCTION DQRT14( TRANS, M, N, NRHS, A, LDA, X,
     $                 LDX, WORK, LWORK )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDA, LDX, LWORK, M, N, NRHS
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), WORK( LWORK ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  DQRT14 checks whether X is in the row space of A or A'.  It does so
*  by scaling both X and A such that their norms are in the range
*  [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
*  (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'),
*  and returning the norm of the trailing triangle, scaled by
*  MAX(M,N,NRHS)*eps.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          = 'N':  No transpose, check for X in the row space of A
*          = 'T':  Transpose, check for X in the row space of A'.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of X.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The M-by-N matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.
*
*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
*          If TRANS = 'N', the N-by-NRHS matrix X.
*          IF TRANS = 'T', the M-by-NRHS matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.
*
*  WORK    (workspace) DOUBLE PRECISION array dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          length of workspace array required
*          If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
*          if TRANS = 'T', LWORK >= (N+NRHS)*(M+2).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            TPSD
      INTEGER            I, INFO, J, LDWORK
      DOUBLE PRECISION   ANRM, ERR, XNRM
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   RWORK( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           LSAME, DLAMCH, DLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGELQ2, DGEQR2, DLACPY, DLASCL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      DQRT14 = ZERO
      IF( LSAME( TRANS, 'N' ) ) THEN
         LDWORK = M + NRHS
         TPSD = .FALSE.
         IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
            CALL XERBLA( 'DQRT14', 10 )
            RETURN
         ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
            RETURN
         END IF
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
         LDWORK = M
         TPSD = .TRUE.
         IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
            CALL XERBLA( 'DQRT14', 10 )
            RETURN
         ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
            RETURN
         END IF
      ELSE
         CALL XERBLA( 'DQRT14', 1 )
         RETURN
      END IF
*
*     Copy and scale A
*
      CALL DLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
      ANRM = DLANGE( 'M', M, N, WORK, LDWORK, RWORK )
      IF( ANRM.NE.ZERO )
     $   CALL DLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
*
*     Copy X or X' into the right place and scale it
*
      IF( TPSD ) THEN
*
*        Copy X into columns n+1:n+nrhs of work
*
         CALL DLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
     $                LDWORK )
         XNRM = DLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
     $          RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL DLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
     $                   WORK( N*LDWORK+1 ), LDWORK, INFO )
         ANRM = DLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK )
*
*        Compute QR factorization of X
*
         CALL DGEQR2( M, N+NRHS, WORK, LDWORK,
     $                WORK( LDWORK*( N+NRHS )+1 ),
     $                WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
     $                INFO )
*
*        Compute largest entry in upper triangle of
*        work(n+1:m,n+1:n+nrhs)
*
         ERR = ZERO
         DO 20 J = N + 1, N + NRHS
            DO 10 I = N + 1, MIN( M, J )
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
   10       CONTINUE
   20    CONTINUE
*
      ELSE
*
*        Copy X' into rows m+1:m+nrhs of work
*
         DO 40 I = 1, N
            DO 30 J = 1, NRHS
               WORK( M+J+( I-1 )*LDWORK ) = X( I, J )
   30       CONTINUE
   40    CONTINUE
*
         XNRM = DLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL DLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
     $                   LDWORK, INFO )
*
*        Compute LQ factorization of work
*
         CALL DGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
     $                WORK( LDWORK*( N+1 )+1 ), INFO )
*
*        Compute largest entry in lower triangle in
*        work(m+1:m+nrhs,m+1:n)
*
         ERR = ZERO
         DO 60 J = M + 1, N
            DO 50 I = J, LDWORK
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
   50       CONTINUE
   60    CONTINUE
*
      END IF
*
      DQRT14 = ERR / ( DBLE( MAX( M, N, NRHS ) )*DLAMCH( 'Epsilon' ) )
*
      RETURN
*
*     End of DQRT14
*
      END