1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  
     | 
    
            SUBROUTINE ZCHKQP( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A,
     $                   COPYA, S, COPYS, TAU, WORK, RWORK, IWORK,
     $                   NOUT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      LOGICAL            TSTERR
      INTEGER            NM, NN, NOUT
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            IWORK( * ), MVAL( * ), NVAL( * )
      DOUBLE PRECISION   COPYS( * ), RWORK( * ), S( * )
      COMPLEX*16         A( * ), COPYA( * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZCHKQP tests ZGEQPF.
*
*  Arguments
*  =========
*
*  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
*          The matrix types to be used for testing.  Matrices of type j
*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*
*  NM      (input) INTEGER
*          The number of values of M contained in the vector MVAL.
*
*  MVAL    (input) INTEGER array, dimension (NM)
*          The values of the matrix row dimension M.
*
*  NN      (input) INTEGER
*          The number of values of N contained in the vector NVAL.
*
*  NVAL    (input) INTEGER array, dimension (NN)
*          The values of the matrix column dimension N.
*
*  THRESH  (input) DOUBLE PRECISION
*          The threshold value for the test ratios.  A result is
*          included in the output file if RESULT >= THRESH.  To have
*          every test ratio printed, use THRESH = 0.
*
*  TSTERR  (input) LOGICAL
*          Flag that indicates whether error exits are to be tested.
*
*  A       (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)
*          where MMAX is the maximum value of M in MVAL and NMAX is the
*          maximum value of N in NVAL.
*
*  COPYA   (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)
*
*  S       (workspace) DOUBLE PRECISION array, dimension
*                      (min(MMAX,NMAX))
*
*  COPYS   (workspace) DOUBLE PRECISION array, dimension
*                      (min(MMAX,NMAX))
*
*  TAU     (workspace) COMPLEX*16 array, dimension (MMAX)
*
*  WORK    (workspace) COMPLEX*16 array, dimension
*                      (max(M*max(M,N) + 4*min(M,N) + max(M,N)))
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (4*NMAX)
*
*  IWORK   (workspace) INTEGER array, dimension (NMAX)
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NTYPES
      PARAMETER          ( NTYPES = 6 )
      INTEGER            NTESTS
      PARAMETER          ( NTESTS = 3 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      CHARACTER*3        PATH
      INTEGER            I, IHIGH, ILOW, IM, IMODE, IN, INFO, ISTEP, K,
     $                   LDA, LWORK, M, MNMIN, MODE, N, NERRS, NFAIL,
     $                   NRUN
      DOUBLE PRECISION   EPS
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
      DOUBLE PRECISION   RESULT( NTESTS )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZQPT01, ZQRT11, ZQRT12
      EXTERNAL           DLAMCH, ZQPT01, ZQRT11, ZQRT12
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALAHD, ALASUM, DLAORD, ZERRQP, ZGEQPF, ZLACPY,
     $                   ZLASET, ZLATMS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, MAX, MIN
*     ..
*     .. Scalars in Common ..
      LOGICAL            LERR, OK
      CHARACTER*6        SRNAMT
      INTEGER            INFOT, IOUNIT
*     ..
*     .. Common blocks ..
      COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
*     ..
*     .. Executable Statements ..
*
*     Initialize constants and the random number seed.
*
      PATH( 1: 1 ) = 'Zomplex precision'
      PATH( 2: 3 ) = 'QP'
      NRUN = 0
      NFAIL = 0
      NERRS = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
      EPS = DLAMCH( 'Epsilon' )
*
*     Test the error exits
*
      IF( TSTERR )
     $   CALL ZERRQP( PATH, NOUT )
      INFOT = 0
*
      DO 80 IM = 1, NM
*
*        Do for each value of M in MVAL.
*
         M = MVAL( IM )
         LDA = MAX( 1, M )
*
         DO 70 IN = 1, NN
*
*           Do for each value of N in NVAL.
*
            N = NVAL( IN )
            MNMIN = MIN( M, N )
            LWORK = MAX( 1, M*MAX( M, N )+4*MNMIN+MAX( M, N ) )
*
            DO 60 IMODE = 1, NTYPES
               IF( .NOT.DOTYPE( IMODE ) )
     $            GO TO 60
*
*              Do for each type of matrix
*                 1:  zero matrix
*                 2:  one small singular value
*                 3:  geometric distribution of singular values
*                 4:  first n/2 columns fixed
*                 5:  last n/2 columns fixed
*                 6:  every second column fixed
*
               MODE = IMODE
               IF( IMODE.GT.3 )
     $            MODE = 1
*
*              Generate test matrix of size m by n using
*              singular value distribution indicated by `mode'.
*
               DO 20 I = 1, N
                  IWORK( I ) = 0
   20          CONTINUE
               IF( IMODE.EQ.1 ) THEN
                  CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ),
     $                         DCMPLX( ZERO ), COPYA, LDA )
                  DO 30 I = 1, MNMIN
                     COPYS( I ) = ZERO
   30             CONTINUE
               ELSE
                  CALL ZLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', COPYS,
     $                         MODE, ONE / EPS, ONE, M, N, 'No packing',
     $                         COPYA, LDA, WORK, INFO )
                  IF( IMODE.GE.4 ) THEN
                     IF( IMODE.EQ.4 ) THEN
                        ILOW = 1
                        ISTEP = 1
                        IHIGH = MAX( 1, N / 2 )
                     ELSE IF( IMODE.EQ.5 ) THEN
                        ILOW = MAX( 1, N / 2 )
                        ISTEP = 1
                        IHIGH = N
                     ELSE IF( IMODE.EQ.6 ) THEN
                        ILOW = 1
                        ISTEP = 2
                        IHIGH = N
                     END IF
                     DO 40 I = ILOW, IHIGH, ISTEP
                        IWORK( I ) = 1
   40                CONTINUE
                  END IF
                  CALL DLAORD( 'Decreasing', MNMIN, COPYS, 1 )
               END IF
*
*              Save A and its singular values
*
               CALL ZLACPY( 'All', M, N, COPYA, LDA, A, LDA )
*
*              Compute the QR factorization with pivoting of A
*
               SRNAMT = 'ZGEQPF'
               CALL ZGEQPF( M, N, A, LDA, IWORK, TAU, WORK, RWORK,
     $                      INFO )
*
*              Compute norm(svd(a) - svd(r))
*
               RESULT( 1 ) = ZQRT12( M, N, A, LDA, COPYS, WORK, LWORK,
     $                       RWORK )
*
*              Compute norm( A*P - Q*R )
*
               RESULT( 2 ) = ZQPT01( M, N, MNMIN, COPYA, A, LDA, TAU,
     $                       IWORK, WORK, LWORK )
*
*              Compute Q'*Q
*
               RESULT( 3 ) = ZQRT11( M, MNMIN, A, LDA, TAU, WORK,
     $                       LWORK )
*
*              Print information about the tests that did not pass
*              the threshold.
*
               DO 50 K = 1, 3
                  IF( RESULT( K ).GE.THRESH ) THEN
                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                  CALL ALAHD( NOUT, PATH )
                     WRITE( NOUT, FMT = 9999 )M, N, IMODE, K,
     $                  RESULT( K )
                     NFAIL = NFAIL + 1
                  END IF
   50          CONTINUE
               NRUN = NRUN + 3
   60       CONTINUE
   70    CONTINUE
   80 CONTINUE
*
*     Print a summary of the results.
*
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
 9999 FORMAT( ' M =', I5, ', N =', I5, ', type ', I2, ', test ', I2,
     $      ', ratio =', G12.5 )
*
*     End of ZCHKQP
*
      END
 
     |