File: zrqt02.f

package info (click to toggle)
lapack99 3.0-11
  • links: PTS
  • area: main
  • in suites: woody
  • size: 37,008 kB
  • ctags: 32,715
  • sloc: fortran: 436,304; makefile: 1,571; sh: 28
file content (169 lines) | stat: -rw-r--r-- 5,420 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
      SUBROUTINE ZRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RESULT( * ), RWORK( * )
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
     $                   R( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with
*  orthonornmal rows that is defined as the product of k elementary
*  reflectors.
*
*  Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates
*  the orthogonal matrix Q defined by the factorization of the last k
*  rows of A; it compares R(m-k+1:m,n-m+1:n) with
*  A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
*  orthonormal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q to be generated.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q to be generated.
*          N >= M >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. M >= K >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The m-by-n matrix A which was factorized by ZRQT01.
*
*  AF      (input) COMPLEX*16 array, dimension (LDA,N)
*          Details of the RQ factorization of A, as returned by ZGERQF.
*          See ZGERQF for further details.
*
*  Q       (workspace) COMPLEX*16 array, dimension (LDA,N)
*
*  R       (workspace) COMPLEX*16 array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
*  TAU     (input) COMPLEX*16 array, dimension (M)
*          The scalar factors of the elementary reflectors corresponding
*          to the RQ factorization in AF.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         ROGUE
      PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      DOUBLE PRECISION   ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
      EXTERNAL           DLAMCH, ZLANGE, ZLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNGRQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
         RESULT( 1 ) = ZERO
         RESULT( 2 ) = ZERO
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the last k rows of the factorization to the array Q
*
      CALL ZLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
      IF( K.LT.N )
     $   CALL ZLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
     $                Q( M-K+1, 1 ), LDA )
      IF( K.GT.1 )
     $   CALL ZLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
     $                Q( M-K+2, N-K+1 ), LDA )
*
*     Generate the last n rows of the matrix Q
*
      SRNAMT = 'ZUNGRQ'
      CALL ZUNGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
*
*     Copy R(m-k+1:m,n-m+1:n)
*
      CALL ZLASET( 'Full', K, M, DCMPLX( ZERO ), DCMPLX( ZERO ),
     $             R( M-K+1, N-M+1 ), LDA )
      CALL ZLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
     $             R( M-K+1, N-K+1 ), LDA )
*
*     Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
     $            DCMPLX( -ONE ), A( M-K+1, 1 ), LDA, Q, LDA,
     $            DCMPLX( ONE ), R( M-K+1, N-M+1 ), LDA )
*
*     Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
*
      ANORM = ZLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
      RESID = ZLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
      CALL ZHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = ZLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of ZRQT02
*
      END