1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
SUBROUTINE ZRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( * ), RWORK( * )
COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
$ R( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with
* orthonornmal rows that is defined as the product of k elementary
* reflectors.
*
* Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates
* the orthogonal matrix Q defined by the factorization of the last k
* rows of A; it compares R(m-k+1:m,n-m+1:n) with
* A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
* orthonormal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix Q to be generated. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q to be generated.
* N >= M >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. M >= K >= 0.
*
* A (input) COMPLEX*16 array, dimension (LDA,N)
* The m-by-n matrix A which was factorized by ZRQT01.
*
* AF (input) COMPLEX*16 array, dimension (LDA,N)
* Details of the RQ factorization of A, as returned by ZGERQF.
* See ZGERQF for further details.
*
* Q (workspace) COMPLEX*16 array, dimension (LDA,N)
*
* R (workspace) COMPLEX*16 array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
* TAU (input) COMPLEX*16 array, dimension (M)
* The scalar factors of the elementary reflectors corresponding
* to the RQ factorization in AF.
*
* WORK (workspace) COMPLEX*16 array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* The test ratios:
* RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 ROGUE
PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, EPS, RESID
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
EXTERNAL DLAMCH, ZLANGE, ZLANSY
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNGRQ
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, MAX
* ..
* .. Scalars in Common ..
CHARACTER*6 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
RETURN
END IF
*
EPS = DLAMCH( 'Epsilon' )
*
* Copy the last k rows of the factorization to the array Q
*
CALL ZLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
IF( K.LT.N )
$ CALL ZLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
$ Q( M-K+1, 1 ), LDA )
IF( K.GT.1 )
$ CALL ZLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
$ Q( M-K+2, N-K+1 ), LDA )
*
* Generate the last n rows of the matrix Q
*
SRNAMT = 'ZUNGRQ'
CALL ZUNGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
*
* Copy R(m-k+1:m,n-m+1:n)
*
CALL ZLASET( 'Full', K, M, DCMPLX( ZERO ), DCMPLX( ZERO ),
$ R( M-K+1, N-M+1 ), LDA )
CALL ZLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
$ R( M-K+1, N-K+1 ), LDA )
*
* Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
$ DCMPLX( -ONE ), A( M-K+1, 1 ), LDA, Q, LDA,
$ DCMPLX( ONE ), R( M-K+1, N-M+1 ), LDA )
*
* Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
*
ANORM = ZLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
RESID = ZLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
CALL ZHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = ZLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of ZRQT02
*
END
|