| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 
 |       SUBROUTINE CLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI, RSIGN,
     $                   UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, A,
     $                   LDA, WORK, INFO )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          DIST, EI, RSIGN, SIM, UPPER
      INTEGER            INFO, KL, KU, LDA, MODE, MODES, N
      REAL               ANORM, COND, CONDS
      COMPLEX            DMAX
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      REAL               DS( * )
      COMPLEX            A( LDA, * ), D( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*     CLATME generates random non-symmetric square matrices with
*     specified eigenvalues for testing LAPACK programs.
*
*     CLATME operates by applying the following sequence of
*     operations:
*
*     1. Set the diagonal to D, where D may be input or
*          computed according to MODE, COND, DMAX, and RSIGN
*          as described below.
*
*     2. If UPPER='T', the upper triangle of A is set to random values
*          out of distribution DIST.
*
*     3. If SIM='T', A is multiplied on the left by a random matrix
*          X, whose singular values are specified by DS, MODES, and
*          CONDS, and on the right by X inverse.
*
*     4. If KL < N-1, the lower bandwidth is reduced to KL using
*          Householder transformations.  If KU < N-1, the upper
*          bandwidth is reduced to KU.
*
*     5. If ANORM is not negative, the matrix is scaled to have
*          maximum-element-norm ANORM.
*
*     (Note: since the matrix cannot be reduced beyond Hessenberg form,
*      no packing options are available.)
*
*  Arguments
*  =========
*
*  N      - INTEGER
*           The number of columns (or rows) of A. Not modified.
*
*  DIST   - CHARACTER*1
*           On entry, DIST specifies the type of distribution to be used
*           to generate the random eigen-/singular values, and on the
*           upper triangle (see UPPER).
*           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform )
*           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
*           'N' => NORMAL( 0, 1 )   ( 'N' for normal )
*           'D' => uniform on the complex disc |z| < 1.
*           Not modified.
*
*  ISEED  - INTEGER array, dimension ( 4 )
*           On entry ISEED specifies the seed of the random number
*           generator. They should lie between 0 and 4095 inclusive,
*           and ISEED(4) should be odd. The random number generator
*           uses a linear congruential sequence limited to small
*           integers, and so should produce machine independent
*           random numbers. The values of ISEED are changed on
*           exit, and can be used in the next call to CLATME
*           to continue the same random number sequence.
*           Changed on exit.
*
*  D      - COMPLEX array, dimension ( N )
*           This array is used to specify the eigenvalues of A.  If
*           MODE=0, then D is assumed to contain the eigenvalues
*           otherwise they will be computed according to MODE, COND,
*           DMAX, and RSIGN and placed in D.
*           Modified if MODE is nonzero.
*
*  MODE   - INTEGER
*           On entry this describes how the eigenvalues are to
*           be specified:
*           MODE = 0 means use D as input
*           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
*           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
*           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
*           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*           MODE = 5 sets D to random numbers in the range
*                    ( 1/COND , 1 ) such that their logarithms
*                    are uniformly distributed.
*           MODE = 6 set D to random numbers from same distribution
*                    as the rest of the matrix.
*           MODE < 0 has the same meaning as ABS(MODE), except that
*              the order of the elements of D is reversed.
*           Thus if MODE is between 1 and 4, D has entries ranging
*              from 1 to 1/COND, if between -1 and -4, D has entries
*              ranging from 1/COND to 1,
*           Not modified.
*
*  COND   - REAL
*           On entry, this is used as described under MODE above.
*           If used, it must be >= 1. Not modified.
*
*  DMAX   - COMPLEX
*           If MODE is neither -6, 0 nor 6, the contents of D, as
*           computed according to MODE and COND, will be scaled by
*           DMAX / max(abs(D(i))).  Note that DMAX need not be
*           positive or real: if DMAX is negative or complex (or zero),
*           D will be scaled by a negative or complex number (or zero).
*           If RSIGN='F' then the largest (absolute) eigenvalue will be
*           equal to DMAX.
*           Not modified.
*
*  EI     - CHARACTER*1 (ignored)
*           Not modified.
*
*  RSIGN  - CHARACTER*1
*           If MODE is not 0, 6, or -6, and RSIGN='T', then the
*           elements of D, as computed according to MODE and COND, will
*           be multiplied by a random complex number from the unit
*           circle |z| = 1.  If RSIGN='F', they will not be.  RSIGN may
*           only have the values 'T' or 'F'.
*           Not modified.
*
*  UPPER  - CHARACTER*1
*           If UPPER='T', then the elements of A above the diagonal
*           will be set to random numbers out of DIST.  If UPPER='F',
*           they will not.  UPPER may only have the values 'T' or 'F'.
*           Not modified.
*
*  SIM    - CHARACTER*1
*           If SIM='T', then A will be operated on by a "similarity
*           transform", i.e., multiplied on the left by a matrix X and
*           on the right by X inverse.  X = U S V, where U and V are
*           random unitary matrices and S is a (diagonal) matrix of
*           singular values specified by DS, MODES, and CONDS.  If
*           SIM='F', then A will not be transformed.
*           Not modified.
*
*  DS     - REAL array, dimension ( N )
*           This array is used to specify the singular values of X,
*           in the same way that D specifies the eigenvalues of A.
*           If MODE=0, the DS contains the singular values, which
*           may not be zero.
*           Modified if MODE is nonzero.
*
*  MODES  - INTEGER
*  CONDS  - REAL
*           Similar to MODE and COND, but for specifying the diagonal
*           of S.  MODES=-6 and +6 are not allowed (since they would
*           result in randomly ill-conditioned eigenvalues.)
*
*  KL     - INTEGER
*           This specifies the lower bandwidth of the  matrix.  KL=1
*           specifies upper Hessenberg form.  If KL is at least N-1,
*           then A will have full lower bandwidth.
*           Not modified.
*
*  KU     - INTEGER
*           This specifies the upper bandwidth of the  matrix.  KU=1
*           specifies lower Hessenberg form.  If KU is at least N-1,
*           then A will have full upper bandwidth; if KU and KL
*           are both at least N-1, then A will be dense.  Only one of
*           KU and KL may be less than N-1.
*           Not modified.
*
*  ANORM  - REAL
*           If ANORM is not negative, then A will be scaled by a non-
*           negative real number to make the maximum-element-norm of A
*           to be ANORM.
*           Not modified.
*
*  A      - COMPLEX array, dimension ( LDA, N )
*           On exit A is the desired test matrix.
*           Modified.
*
*  LDA    - INTEGER
*           LDA specifies the first dimension of A as declared in the
*           calling program.  LDA must be at least M.
*           Not modified.
*
*  WORK   - COMPLEX array, dimension ( 3*N )
*           Workspace.
*           Modified.
*
*  INFO   - INTEGER
*           Error code.  On exit, INFO will be set to one of the
*           following values:
*             0 => normal return
*            -1 => N negative
*            -2 => DIST illegal string
*            -5 => MODE not in range -6 to 6
*            -6 => COND less than 1.0, and MODE neither -6, 0 nor 6
*            -9 => RSIGN is not 'T' or 'F'
*           -10 => UPPER is not 'T' or 'F'
*           -11 => SIM   is not 'T' or 'F'
*           -12 => MODES=0 and DS has a zero singular value.
*           -13 => MODES is not in the range -5 to 5.
*           -14 => MODES is nonzero and CONDS is less than 1.
*           -15 => KL is less than 1.
*           -16 => KU is less than 1, or KL and KU are both less than
*                  N-1.
*           -19 => LDA is less than M.
*            1  => Error return from CLATM1 (computing D)
*            2  => Cannot scale to DMAX (max. eigenvalue is 0)
*            3  => Error return from SLATM1 (computing DS)
*            4  => Error return from CLARGE
*            5  => Zero singular value from SLATM1.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADS
      INTEGER            I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN,
     $                   ISIM, IUPPER, J, JC, JCR
      REAL               RALPHA, TEMP
      COMPLEX            ALPHA, TAU, XNORMS
*     ..
*     .. Local Arrays ..
      REAL               TEMPA( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE
      COMPLEX            CLARND
      EXTERNAL           LSAME, CLANGE, CLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEMV, CGERC, CLACGV, CLARFG, CLARGE,
     $                   CLARNV, CLATM1, CLASET, CSCAL, CSSCAL, SLATM1,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CONJG, MAX, MOD
*     ..
*     .. Executable Statements ..
*
*     1)      Decode and Test the input parameters.
*             Initialize flags & seed.
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Decode DIST
*
      IF( LSAME( DIST, 'U' ) ) THEN
         IDIST = 1
      ELSE IF( LSAME( DIST, 'S' ) ) THEN
         IDIST = 2
      ELSE IF( LSAME( DIST, 'N' ) ) THEN
         IDIST = 3
      ELSE IF( LSAME( DIST, 'D' ) ) THEN
         IDIST = 4
      ELSE
         IDIST = -1
      END IF
*
*     Decode RSIGN
*
      IF( LSAME( RSIGN, 'T' ) ) THEN
         IRSIGN = 1
      ELSE IF( LSAME( RSIGN, 'F' ) ) THEN
         IRSIGN = 0
      ELSE
         IRSIGN = -1
      END IF
*
*     Decode UPPER
*
      IF( LSAME( UPPER, 'T' ) ) THEN
         IUPPER = 1
      ELSE IF( LSAME( UPPER, 'F' ) ) THEN
         IUPPER = 0
      ELSE
         IUPPER = -1
      END IF
*
*     Decode SIM
*
      IF( LSAME( SIM, 'T' ) ) THEN
         ISIM = 1
      ELSE IF( LSAME( SIM, 'F' ) ) THEN
         ISIM = 0
      ELSE
         ISIM = -1
      END IF
*
*     Check DS, if MODES=0 and ISIM=1
*
      BADS = .FALSE.
      IF( MODES.EQ.0 .AND. ISIM.EQ.1 ) THEN
         DO 10 J = 1, N
            IF( DS( J ).EQ.ZERO )
     $         BADS = .TRUE.
   10    CONTINUE
      END IF
*
*     Set INFO if an error
*
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( IDIST.EQ.-1 ) THEN
         INFO = -2
      ELSE IF( ABS( MODE ).GT.6 ) THEN
         INFO = -5
      ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE )
     $          THEN
         INFO = -6
      ELSE IF( IRSIGN.EQ.-1 ) THEN
         INFO = -9
      ELSE IF( IUPPER.EQ.-1 ) THEN
         INFO = -10
      ELSE IF( ISIM.EQ.-1 ) THEN
         INFO = -11
      ELSE IF( BADS ) THEN
         INFO = -12
      ELSE IF( ISIM.EQ.1 .AND. ABS( MODES ).GT.5 ) THEN
         INFO = -13
      ELSE IF( ISIM.EQ.1 .AND. MODES.NE.0 .AND. CONDS.LT.ONE ) THEN
         INFO = -14
      ELSE IF( KL.LT.1 ) THEN
         INFO = -15
      ELSE IF( KU.LT.1 .OR. ( KU.LT.N-1 .AND. KL.LT.N-1 ) ) THEN
         INFO = -16
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -19
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLATME', -INFO )
         RETURN
      END IF
*
*     Initialize random number generator
*
      DO 20 I = 1, 4
         ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
   20 CONTINUE
*
      IF( MOD( ISEED( 4 ), 2 ).NE.1 )
     $   ISEED( 4 ) = ISEED( 4 ) + 1
*
*     2)      Set up diagonal of A
*
*             Compute D according to COND and MODE
*
      CALL CLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = 1
         RETURN
      END IF
      IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
*
*        Scale by DMAX
*
         TEMP = ABS( D( 1 ) )
         DO 30 I = 2, N
            TEMP = MAX( TEMP, ABS( D( I ) ) )
   30    CONTINUE
*
         IF( TEMP.GT.ZERO ) THEN
            ALPHA = DMAX / TEMP
         ELSE
            INFO = 2
            RETURN
         END IF
*
         CALL CSCAL( N, ALPHA, D, 1 )
*
      END IF
*
      CALL CLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
      CALL CCOPY( N, D, 1, A, LDA+1 )
*
*     3)      If UPPER='T', set upper triangle of A to random numbers.
*
      IF( IUPPER.NE.0 ) THEN
         DO 40 JC = 2, N
            CALL CLARNV( IDIST, ISEED, JC-1, A( 1, JC ) )
   40    CONTINUE
      END IF
*
*     4)      If SIM='T', apply similarity transformation.
*
*                                -1
*             Transform is  X A X  , where X = U S V, thus
*
*             it is  U S V A V' (1/S) U'
*
      IF( ISIM.NE.0 ) THEN
*
*        Compute S (singular values of the eigenvector matrix)
*        according to CONDS and MODES
*
         CALL SLATM1( MODES, CONDS, 0, 0, ISEED, DS, N, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
*
*        Multiply by V and V'
*
         CALL CLARGE( N, A, LDA, ISEED, WORK, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 4
            RETURN
         END IF
*
*        Multiply by S and (1/S)
*
         DO 50 J = 1, N
            CALL CSSCAL( N, DS( J ), A( J, 1 ), LDA )
            IF( DS( J ).NE.ZERO ) THEN
               CALL CSSCAL( N, ONE / DS( J ), A( 1, J ), 1 )
            ELSE
               INFO = 5
               RETURN
            END IF
   50    CONTINUE
*
*        Multiply by U and U'
*
         CALL CLARGE( N, A, LDA, ISEED, WORK, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 4
            RETURN
         END IF
      END IF
*
*     5)      Reduce the bandwidth.
*
      IF( KL.LT.N-1 ) THEN
*
*        Reduce bandwidth -- kill column
*
         DO 60 JCR = KL + 1, N - 1
            IC = JCR - KL
            IROWS = N + 1 - JCR
            ICOLS = N + KL - JCR
*
            CALL CCOPY( IROWS, A( JCR, IC ), 1, WORK, 1 )
            XNORMS = WORK( 1 )
            CALL CLARFG( IROWS, XNORMS, WORK( 2 ), 1, TAU )
            TAU = CONJG( TAU )
            WORK( 1 ) = CONE
            ALPHA = CLARND( 5, ISEED )
*
            CALL CGEMV( 'C', IROWS, ICOLS, CONE, A( JCR, IC+1 ), LDA,
     $                  WORK, 1, CZERO, WORK( IROWS+1 ), 1 )
            CALL CGERC( IROWS, ICOLS, -TAU, WORK, 1, WORK( IROWS+1 ), 1,
     $                  A( JCR, IC+1 ), LDA )
*
            CALL CGEMV( 'N', N, IROWS, CONE, A( 1, JCR ), LDA, WORK, 1,
     $                  CZERO, WORK( IROWS+1 ), 1 )
            CALL CGERC( N, IROWS, -CONJG( TAU ), WORK( IROWS+1 ), 1,
     $                  WORK, 1, A( 1, JCR ), LDA )
*
            A( JCR, IC ) = XNORMS
            CALL CLASET( 'Full', IROWS-1, 1, CZERO, CZERO,
     $                   A( JCR+1, IC ), LDA )
*
            CALL CSCAL( ICOLS+1, ALPHA, A( JCR, IC ), LDA )
            CALL CSCAL( N, CONJG( ALPHA ), A( 1, JCR ), 1 )
   60    CONTINUE
      ELSE IF( KU.LT.N-1 ) THEN
*
*        Reduce upper bandwidth -- kill a row at a time.
*
         DO 70 JCR = KU + 1, N - 1
            IR = JCR - KU
            IROWS = N + KU - JCR
            ICOLS = N + 1 - JCR
*
            CALL CCOPY( ICOLS, A( IR, JCR ), LDA, WORK, 1 )
            XNORMS = WORK( 1 )
            CALL CLARFG( ICOLS, XNORMS, WORK( 2 ), 1, TAU )
            TAU = CONJG( TAU )
            WORK( 1 ) = CONE
            CALL CLACGV( ICOLS-1, WORK( 2 ), 1 )
            ALPHA = CLARND( 5, ISEED )
*
            CALL CGEMV( 'N', IROWS, ICOLS, CONE, A( IR+1, JCR ), LDA,
     $                  WORK, 1, CZERO, WORK( ICOLS+1 ), 1 )
            CALL CGERC( IROWS, ICOLS, -TAU, WORK( ICOLS+1 ), 1, WORK, 1,
     $                  A( IR+1, JCR ), LDA )
*
            CALL CGEMV( 'C', ICOLS, N, CONE, A( JCR, 1 ), LDA, WORK, 1,
     $                  CZERO, WORK( ICOLS+1 ), 1 )
            CALL CGERC( ICOLS, N, -CONJG( TAU ), WORK, 1,
     $                  WORK( ICOLS+1 ), 1, A( JCR, 1 ), LDA )
*
            A( IR, JCR ) = XNORMS
            CALL CLASET( 'Full', 1, ICOLS-1, CZERO, CZERO,
     $                   A( IR, JCR+1 ), LDA )
*
            CALL CSCAL( IROWS+1, ALPHA, A( IR, JCR ), 1 )
            CALL CSCAL( N, CONJG( ALPHA ), A( JCR, 1 ), LDA )
   70    CONTINUE
      END IF
*
*     Scale the matrix to have norm ANORM
*
      IF( ANORM.GE.ZERO ) THEN
         TEMP = CLANGE( 'M', N, N, A, LDA, TEMPA )
         IF( TEMP.GT.ZERO ) THEN
            RALPHA = ANORM / TEMP
            DO 80 J = 1, N
               CALL CSSCAL( N, RALPHA, A( 1, J ), 1 )
   80       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CLATME
*
      END
 |