1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
SUBROUTINE CGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER LDA, N
REAL SCALE
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), JPIV( * )
COMPLEX A( LDA, * ), RHS( * )
* ..
*
* Purpose
* =======
*
* CGESC2 solves a system of linear equations
*
* A * X = scale* RHS
*
* with a general N-by-N matrix A using the LU factorization with
* complete pivoting computed by CGETC2.
*
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of columns of the matrix A.
*
* A (input) COMPLEX array, dimension (LDA, N)
* On entry, the LU part of the factorization of the n-by-n
* matrix A computed by CGETC2: A = P * L * U * Q
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1, N).
*
* RHS (input/output) COMPLEX array, dimension N.
* On entry, the right hand side vector b.
* On exit, the solution vector X.
*
* IPIV (iput) INTEGER array, dimension (N).
* The pivot indices; for 1 <= i <= N, row i of the
* matrix has been interchanged with row IPIV(i).
*
* JPIV (iput) INTEGER array, dimension (N).
* The pivot indices; for 1 <= j <= N, column j of the
* matrix has been interchanged with column JPIV(j).
*
* SCALE (output) REAL
* On exit, SCALE contains the scale factor. SCALE is chosen
* 0 <= SCALE <= 1 to prevent owerflow in the solution.
*
* Further Details
* ===============
*
* Based on contributions by
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
* Umea University, S-901 87 Umea, Sweden.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL BIGNUM, EPS, SMLNUM
COMPLEX TEMP
* ..
* .. External Subroutines ..
EXTERNAL CLASWP, CSCAL, SLABAD
* ..
* .. External Functions ..
INTEGER ICAMAX
REAL SLAMCH
EXTERNAL ICAMAX, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, REAL
* ..
* .. Executable Statements ..
*
* Set constant to control overflow
*
EPS = SLAMCH( 'P' )
SMLNUM = SLAMCH( 'S' ) / EPS
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Apply permutations IPIV to RHS
*
CALL CLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
*
* Solve for L part
*
DO 20 I = 1, N - 1
DO 10 J = I + 1, N
RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
10 CONTINUE
20 CONTINUE
*
* Solve for U part
*
SCALE = ONE
*
* Check for scaling
*
I = ICAMAX( N, RHS, 1 )
IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
TEMP = CMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) )
CALL CSCAL( N, TEMP, RHS( 1 ), 1 )
SCALE = SCALE*REAL( TEMP )
END IF
DO 40 I = N, 1, -1
TEMP = CMPLX( ONE, ZERO ) / A( I, I )
RHS( I ) = RHS( I )*TEMP
DO 30 J = I + 1, N
RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
30 CONTINUE
40 CONTINUE
*
* Apply permutations JPIV to the solution (RHS)
*
CALL CLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
RETURN
*
* End of CGESC2
*
END
|