File: cgesc2.f

package info (click to toggle)
lapack99 3.0-14
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 37,008 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,567; sh: 28
file content (134 lines) | stat: -rw-r--r-- 3,780 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
      SUBROUTINE CGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            LDA, N
      REAL               SCALE
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), JPIV( * )
      COMPLEX            A( LDA, * ), RHS( * )
*     ..
*
*  Purpose
*  =======
*
*  CGESC2 solves a system of linear equations
*
*            A * X = scale* RHS
*
*  with a general N-by-N matrix A using the LU factorization with
*  complete pivoting computed by CGETC2.
*
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.
*
*  A       (input) COMPLEX array, dimension (LDA, N)
*          On entry, the  LU part of the factorization of the n-by-n
*          matrix A computed by CGETC2:  A = P * L * U * Q
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1, N).
*
*  RHS     (input/output) COMPLEX array, dimension N.
*          On entry, the right hand side vector b.
*          On exit, the solution vector X.
*
*  IPIV    (iput) INTEGER array, dimension (N).
*          The pivot indices; for 1 <= i <= N, row i of the
*          matrix has been interchanged with row IPIV(i).
*
*  JPIV    (iput) INTEGER array, dimension (N).
*          The pivot indices; for 1 <= j <= N, column j of the
*          matrix has been interchanged with column JPIV(j).
*
*  SCALE    (output) REAL
*           On exit, SCALE contains the scale factor. SCALE is chosen
*           0 <= SCALE <= 1 to prevent owerflow in the solution.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               BIGNUM, EPS, SMLNUM
      COMPLEX            TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASWP, CSCAL, SLABAD
*     ..
*     .. External Functions ..
      INTEGER            ICAMAX
      REAL               SLAMCH
      EXTERNAL           ICAMAX, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, REAL
*     ..
*     .. Executable Statements ..
*
*     Set constant to control overflow
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
*
*     Apply permutations IPIV to RHS
*
      CALL CLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
*
*     Solve for L part
*
      DO 20 I = 1, N - 1
         DO 10 J = I + 1, N
            RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
   10    CONTINUE
   20 CONTINUE
*
*     Solve for U part
*
      SCALE = ONE
*
*     Check for scaling
*
      I = ICAMAX( N, RHS, 1 )
      IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
         TEMP = CMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) )
         CALL CSCAL( N, TEMP, RHS( 1 ), 1 )
         SCALE = SCALE*REAL( TEMP )
      END IF
      DO 40 I = N, 1, -1
         TEMP = CMPLX( ONE, ZERO ) / A( I, I )
         RHS( I ) = RHS( I )*TEMP
         DO 30 J = I + 1, N
            RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
   30    CONTINUE
   40 CONTINUE
*
*     Apply permutations JPIV to the solution (RHS)
*
      CALL CLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
      RETURN
*
*     End of CGESC2
*
      END