File: cpttrs.f

package info (click to toggle)
lapack99 3.0-14
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 37,008 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,567; sh: 28
file content (136 lines) | stat: -rw-r--r-- 4,014 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      SUBROUTINE CPTTRS( UPLO, N, NRHS, D, E, B, LDB, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      COMPLEX            B( LDB, * ), E( * )
*     ..
*
*  Purpose
*  =======
*
*  CPTTRS solves a tridiagonal system of the form
*     A * X = B
*  using the factorization A = U'*D*U or A = L*D*L' computed by CPTTRF.
*  D is a diagonal matrix specified in the vector D, U (or L) is a unit
*  bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
*  the vector E, and X and B are N by NRHS matrices.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies the form of the factorization and whether the
*          vector E is the superdiagonal of the upper bidiagonal factor
*          U or the subdiagonal of the lower bidiagonal factor L.
*          = 'U':  A = U'*D*U, E is the superdiagonal of U
*          = 'L':  A = L*D*L', E is the subdiagonal of L
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D from the
*          factorization A = U'*D*U or A = L*D*L'.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          If UPLO = 'U', the (n-1) superdiagonal elements of the unit
*          bidiagonal factor U from the factorization A = U'*D*U.
*          If UPLO = 'L', the (n-1) subdiagonal elements of the unit
*          bidiagonal factor L from the factorization A = L*D*L'.
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors B for the system of
*          linear equations.
*          On exit, the solution vectors, X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            IUPLO, J, JB, NB
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           CPTTS2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      UPPER = ( UPLO.EQ.'U' .OR. UPLO.EQ.'u' )
      IF( .NOT.UPPER .AND. .NOT.( UPLO.EQ.'L' .OR. UPLO.EQ.'l' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPTTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
*     Determine the number of right-hand sides to solve at a time.
*
      IF( NRHS.EQ.1 ) THEN
         NB = 1
      ELSE
         NB = MAX( 1, ILAENV( 1, 'CPTTRS', UPLO, N, NRHS, -1, -1 ) )
      END IF
*
*     Decode UPLO
*
      IF( UPPER ) THEN
         IUPLO = 1
      ELSE
         IUPLO = 0
      END IF
*
      IF( NB.GE.NRHS ) THEN
         CALL CPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
      ELSE
         DO 10 J = 1, NRHS, NB
            JB = MIN( NRHS-J+1, NB )
            CALL CPTTS2( IUPLO, N, JB, D, E, B( 1, J ), LDB )
   10    CONTINUE
      END IF
*
      RETURN
*
*     End of CPTTRS
*
      END