1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  
     | 
    
            SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            INFO, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), SEP( * )
*     ..
*
*  Purpose
*  =======
*
*  DDISNA computes the reciprocal condition numbers for the eigenvectors
*  of a real symmetric or complex Hermitian matrix or for the left or
*  right singular vectors of a general m-by-n matrix. The reciprocal
*  condition number is the 'gap' between the corresponding eigenvalue or
*  singular value and the nearest other one.
*
*  The bound on the error, measured by angle in radians, in the I-th
*  computed vector is given by
*
*         DLAMCH( 'E' ) * ( ANORM / SEP( I ) )
*
*  where ANORM = 2-norm(A) = max( abs( D(j) ) ).  SEP(I) is not allowed
*  to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of
*  the error bound.
*
*  DDISNA may also be used to compute error bounds for eigenvectors of
*  the generalized symmetric definite eigenproblem.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies for which problem the reciprocal condition numbers
*          should be computed:
*          = 'E':  the eigenvectors of a symmetric/Hermitian matrix;
*          = 'L':  the left singular vectors of a general matrix;
*          = 'R':  the right singular vectors of a general matrix.
*
*  M       (input) INTEGER
*          The number of rows of the matrix. M >= 0.
*
*  N       (input) INTEGER
*          If JOB = 'L' or 'R', the number of columns of the matrix,
*          in which case N >= 0. Ignored if JOB = 'E'.
*
*  D       (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
*                              dimension (min(M,N)) if JOB = 'L' or 'R'
*          The eigenvalues (if JOB = 'E') or singular values (if JOB =
*          'L' or 'R') of the matrix, in either increasing or decreasing
*          order. If singular values, they must be non-negative.
*
*  SEP     (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
*                               dimension (min(M,N)) if JOB = 'L' or 'R'
*          The reciprocal condition numbers of the vectors.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DECR, EIGEN, INCR, LEFT, RIGHT, SING
      INTEGER            I, K
      DOUBLE PRECISION   ANORM, EPS, NEWGAP, OLDGAP, SAFMIN, THRESH
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      EIGEN = LSAME( JOB, 'E' )
      LEFT = LSAME( JOB, 'L' )
      RIGHT = LSAME( JOB, 'R' )
      SING = LEFT .OR. RIGHT
      IF( EIGEN ) THEN
         K = M
      ELSE IF( SING ) THEN
         K = MIN( M, N )
      END IF
      IF( .NOT.EIGEN .AND. .NOT.SING ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( K.LT.0 ) THEN
         INFO = -3
      ELSE
         INCR = .TRUE.
         DECR = .TRUE.
         DO 10 I = 1, K - 1
            IF( INCR )
     $         INCR = INCR .AND. D( I ).LE.D( I+1 )
            IF( DECR )
     $         DECR = DECR .AND. D( I ).GE.D( I+1 )
   10    CONTINUE
         IF( SING .AND. K.GT.0 ) THEN
            IF( INCR )
     $         INCR = INCR .AND. ZERO.LE.D( 1 )
            IF( DECR )
     $         DECR = DECR .AND. D( K ).GE.ZERO
         END IF
         IF( .NOT.( INCR .OR. DECR ) )
     $      INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DDISNA', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
*     Compute reciprocal condition numbers
*
      IF( K.EQ.1 ) THEN
         SEP( 1 ) = DLAMCH( 'O' )
      ELSE
         OLDGAP = ABS( D( 2 )-D( 1 ) )
         SEP( 1 ) = OLDGAP
         DO 20 I = 2, K - 1
            NEWGAP = ABS( D( I+1 )-D( I ) )
            SEP( I ) = MIN( OLDGAP, NEWGAP )
            OLDGAP = NEWGAP
   20    CONTINUE
         SEP( K ) = OLDGAP
      END IF
      IF( SING ) THEN
         IF( ( LEFT .AND. M.GT.N ) .OR. ( RIGHT .AND. M.LT.N ) ) THEN
            IF( INCR )
     $         SEP( 1 ) = MIN( SEP( 1 ), D( 1 ) )
            IF( DECR )
     $         SEP( K ) = MIN( SEP( K ), D( K ) )
         END IF
      END IF
*
*     Ensure that reciprocal condition numbers are not less than
*     threshold, in order to limit the size of the error bound
*
      EPS = DLAMCH( 'E' )
      SAFMIN = DLAMCH( 'S' )
      ANORM = MAX( ABS( D( 1 ) ), ABS( D( K ) ) )
      IF( ANORM.EQ.ZERO ) THEN
         THRESH = EPS
      ELSE
         THRESH = MAX( EPS*ANORM, SAFMIN )
      END IF
      DO 30 I = 1, K
         SEP( I ) = MAX( SEP( I ), THRESH )
   30 CONTINUE
*
      RETURN
*
*     End of DDISNA
*
      END
 
     |