File: ssygvd.f

package info (click to toggle)
lapack99 3.0-14
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 37,008 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,567; sh: 28
file content (277 lines) | stat: -rw-r--r-- 9,355 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      SUBROUTINE SSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
     $                   LWORK, IWORK, LIWORK, INFO )
*
*  -- LAPACK driver routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
*  of a real generalized symmetric-definite eigenproblem, of the form
*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
*  B are assumed to be symmetric and B is also positive definite.
*  If eigenvectors are desired, it uses a divide and conquer algorithm.
*
*  The divide and conquer algorithm makes very mild assumptions about
*  floating point arithmetic. It will work on machines with a guard
*  digit in add/subtract, or on those binary machines without guard
*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
*  Cray-2. It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          Specifies the problem type to be solved:
*          = 1:  A*x = (lambda)*B*x
*          = 2:  A*B*x = (lambda)*x
*          = 3:  B*A*x = (lambda)*x
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangles of A and B are stored;
*          = 'L':  Lower triangles of A and B are stored.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA, N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of A contains the
*          upper triangular part of the matrix A.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of A contains
*          the lower triangular part of the matrix A.
*
*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*          matrix Z of eigenvectors.  The eigenvectors are normalized
*          as follows:
*          if ITYPE = 1 or 2, Z**T*B*Z = I;
*          if ITYPE = 3, Z**T*inv(B)*Z = I.
*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
*          or the lower triangle (if UPLO='L') of A, including the
*          diagonal, is destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  B       (input/output) REAL array, dimension (LDB, N)
*          On entry, the symmetric matrix B.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of B contains the
*          upper triangular part of the matrix B.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of B contains
*          the lower triangular part of the matrix B.
*
*          On exit, if INFO <= N, the part of B containing the matrix is
*          overwritten by the triangular factor U or L from the Cholesky
*          factorization B = U**T*U or B = L*L**T.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  W       (output) REAL array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If N <= 1,               LWORK >= 1.
*          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          If N <= 1,                LIWORK >= 1.
*          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  SPOTRF or SSYEVD returned an error code:
*             <= N:  if INFO = i, SSYEVD failed to converge;
*                    i off-diagonal elements of an intermediate
*                    tridiagonal form did not converge to zero;
*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
*                    minor of order i of B is not positive definite.
*                    The factorization of B could not be completed and
*                    no eigenvalues or eigenvectors were computed.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER, WANTZ
      CHARACTER          TRANS
      INTEGER            LIOPT, LIWMIN, LOPT, LWMIN, NEIG
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SPOTRF, SSYEVD, SSYGST, STRMM, STRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
      INFO = 0
      IF( N.LE.1 ) THEN
         LIWMIN = 1
         LWMIN = 1
         LOPT = LWMIN
         LIOPT = LIWMIN
      ELSE
         IF( WANTZ ) THEN
            LIWMIN = 3 + 5*N
            LWMIN = 1 + 6*N + 2*N**2
         ELSE
            LIWMIN = 1
            LWMIN = 2*N + 1
         END IF
         LOPT = LWMIN
         LIOPT = LIWMIN
      END IF
      IF( ITYPE.LT.0 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -11
      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
*
      IF( INFO.EQ.0 ) THEN
         WORK( 1 ) = LOPT
         IWORK( 1 ) = LIOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYGVD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a Cholesky factorization of B.
*
      CALL SPOTRF( UPLO, N, B, LDB, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem and solve.
*
      CALL SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
      CALL SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
     $             INFO )
      LOPT = MAX( REAL( LOPT ), REAL( WORK( 1 ) ) )
      LIOPT = MAX( REAL( LIOPT ), REAL( IWORK( 1 ) ) )
*
      IF( WANTZ ) THEN
*
*        Backtransform eigenvectors to the original problem.
*
         NEIG = N
         IF( INFO.GT.0 )
     $      NEIG = INFO - 1
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
*
            IF( UPPER ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'T'
            END IF
*
            CALL STRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
     $                  B, LDB, A, LDA )
*
         ELSE IF( ITYPE.EQ.3 ) THEN
*
*           For B*A*x=(lambda)*x;
*           backtransform eigenvectors: x = L*y or U'*y
*
            IF( UPPER ) THEN
               TRANS = 'T'
            ELSE
               TRANS = 'N'
            END IF
*
            CALL STRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
     $                  B, LDB, A, LDA )
         END IF
      END IF
*
      WORK( 1 ) = LOPT
      IWORK( 1 ) = LIOPT
*
      RETURN
*
*     End of SSYGVD
*
      END