1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
  
     | 
    
            SUBROUTINE ZPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
     $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
     $                   WORK, RWORK, INFO )
*
*  -- LAPACK driver routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, UPLO
      INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * )
      COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
*  compute the solution to a complex system of linear equations
*     A * X = B,
*  where A is an N-by-N Hermitian positive definite band matrix and X
*  and B are N-by-NRHS matrices.
*
*  Error bounds on the solution and a condition estimate are also
*  provided.
*
*  Description
*  ===========
*
*  The following steps are performed:
*
*  1. If FACT = 'E', real scaling factors are computed to equilibrate
*     the system:
*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
*     Whether or not the system will be equilibrated depends on the
*     scaling of the matrix A, but if equilibration is used, A is
*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
*
*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
*     factor the matrix A (after equilibration if FACT = 'E') as
*        A = U**H * U,  if UPLO = 'U', or
*        A = L * L**H,  if UPLO = 'L',
*     where U is an upper triangular band matrix, and L is a lower
*     triangular band matrix.
*
*  3. If the leading i-by-i principal minor is not positive definite,
*     then the routine returns with INFO = i. Otherwise, the factored
*     form of A is used to estimate the condition number of the matrix
*     A.  If the reciprocal of the condition number is less than machine
*     precision, INFO = N+1 is returned as a warning, but the routine
*     still goes on to solve for X and compute error bounds as
*     described below.
*
*  4. The system of equations is solved for X using the factored form
*     of A.
*
*  5. Iterative refinement is applied to improve the computed solution
*     matrix and calculate error bounds and backward error estimates
*     for it.
*
*  6. If equilibration was used, the matrix X is premultiplied by
*     diag(S) so that it solves the original system before
*     equilibration.
*
*  Arguments
*  =========
*
*  FACT    (input) CHARACTER*1
*          Specifies whether or not the factored form of the matrix A is
*          supplied on entry, and if not, whether the matrix A should be
*          equilibrated before it is factored.
*          = 'F':  On entry, AFB contains the factored form of A.
*                  If EQUED = 'Y', the matrix A has been equilibrated
*                  with scaling factors given by S.  AB and AFB will not
*                  be modified.
*          = 'N':  The matrix A will be copied to AFB and factored.
*          = 'E':  The matrix A will be equilibrated if necessary, then
*                  copied to AFB and factored.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The number of linear equations, i.e., the order of the
*          matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of superdiagonals of the matrix A if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right-hand sides, i.e., the number of columns
*          of the matrices B and X.  NRHS >= 0.
*
*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
*          On entry, the upper or lower triangle of the Hermitian band
*          matrix A, stored in the first KD+1 rows of the array, except
*          if FACT = 'F' and EQUED = 'Y', then A must contain the
*          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
*          is stored in the j-th column of the array AB as follows:
*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
*          See below for further details.
*
*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*          diag(S)*A*diag(S).
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array A.  LDAB >= KD+1.
*
*  AFB     (input or output) COMPLEX*16 array, dimension (LDAFB,N)
*          If FACT = 'F', then AFB is an input argument and on entry
*          contains the triangular factor U or L from the Cholesky
*          factorization A = U**H*U or A = L*L**H of the band matrix
*          A, in the same storage format as A (see AB).  If EQUED = 'Y',
*          then AFB is the factored form of the equilibrated matrix A.
*
*          If FACT = 'N', then AFB is an output argument and on exit
*          returns the triangular factor U or L from the Cholesky
*          factorization A = U**H*U or A = L*L**H.
*
*          If FACT = 'E', then AFB is an output argument and on exit
*          returns the triangular factor U or L from the Cholesky
*          factorization A = U**H*U or A = L*L**H of the equilibrated
*          matrix A (see the description of A for the form of the
*          equilibrated matrix).
*
*  LDAFB   (input) INTEGER
*          The leading dimension of the array AFB.  LDAFB >= KD+1.
*
*  EQUED   (input or output) CHARACTER*1
*          Specifies the form of equilibration that was done.
*          = 'N':  No equilibration (always true if FACT = 'N').
*          = 'Y':  Equilibration was done, i.e., A has been replaced by
*                  diag(S) * A * diag(S).
*          EQUED is an input argument if FACT = 'F'; otherwise, it is an
*          output argument.
*
*  S       (input or output) DOUBLE PRECISION array, dimension (N)
*          The scale factors for A; not accessed if EQUED = 'N'.  S is
*          an input argument if FACT = 'F'; otherwise, S is an output
*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
*          must be positive.
*
*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
*          On entry, the N-by-NRHS right hand side matrix B.
*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
*          B is overwritten by diag(S) * B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
*          the original system of equations.  Note that if EQUED = 'Y',
*          A and B are modified on exit, and the solution to the
*          equilibrated system is inv(diag(S))*X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  RCOND   (output) DOUBLE PRECISION
*          The estimate of the reciprocal condition number of the matrix
*          A after equilibration (if done).  If RCOND is less than the
*          machine precision (in particular, if RCOND = 0), the matrix
*          is singular to working precision.  This condition is
*          indicated by a return code of INFO > 0.
*
*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
*          The estimated forward error bound for each solution vector
*          X(j) (the j-th column of the solution matrix X).
*          If XTRUE is the true solution corresponding to X(j), FERR(j)
*          is an estimated upper bound for the magnitude of the largest
*          element in (X(j) - XTRUE) divided by the magnitude of the
*          largest element in X(j).  The estimate is as reliable as
*          the estimate for RCOND, and is almost always a slight
*          overestimate of the true error.
*
*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
*          The componentwise relative backward error of each solution
*          vector X(j) (i.e., the smallest relative change in
*          any element of A or B that makes X(j) an exact solution).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, and i is
*                <= N:  the leading minor of order i of A is
*                       not positive definite, so the factorization
*                       could not be completed, and the solution has not
*                       been computed. RCOND = 0 is returned.
*                = N+1: U is nonsingular, but RCOND is less than machine
*                       precision, meaning that the matrix is singular
*                       to working precision.  Nevertheless, the
*                       solution and error bounds are computed because
*                       there are a number of situations where the
*                       computed solution can be more accurate than the
*                       value of RCOND would suggest.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  N = 6, KD = 2, and UPLO = 'U':
*
*  Two-dimensional storage of the Hermitian matrix A:
*
*     a11  a12  a13
*          a22  a23  a24
*               a33  a34  a35
*                    a44  a45  a46
*                         a55  a56
*     (aij=conjg(aji))         a66
*
*  Band storage of the upper triangle of A:
*
*      *    *   a13  a24  a35  a46
*      *   a12  a23  a34  a45  a56
*     a11  a22  a33  a44  a55  a66
*
*  Similarly, if UPLO = 'L' the format of A is as follows:
*
*     a11  a22  a33  a44  a55  a66
*     a21  a32  a43  a54  a65   *
*     a31  a42  a53  a64   *    *
*
*  Array elements marked * are not used by the routine.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
      INTEGER            I, INFEQU, J, J1, J2
      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANHB
      EXTERNAL           LSAME, DLAMCH, ZLANHB
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAQHB, ZPBCON, ZPBEQU,
     $                   ZPBRFS, ZPBTRF, ZPBTRS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      EQUIL = LSAME( FACT, 'E' )
      UPPER = LSAME( UPLO, 'U' )
      IF( NOFACT .OR. EQUIL ) THEN
         EQUED = 'N'
         RCEQU = .FALSE.
      ELSE
         RCEQU = LSAME( EQUED, 'Y' )
         SMLNUM = DLAMCH( 'Safe minimum' )
         BIGNUM = ONE / SMLNUM
      END IF
*
*     Test the input parameters.
*
      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
     $     THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KD.LT.0 ) THEN
         INFO = -4
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -7
      ELSE IF( LDAFB.LT.KD+1 ) THEN
         INFO = -9
      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
         INFO = -10
      ELSE
         IF( RCEQU ) THEN
            SMIN = BIGNUM
            SMAX = ZERO
            DO 10 J = 1, N
               SMIN = MIN( SMIN, S( J ) )
               SMAX = MAX( SMAX, S( J ) )
   10       CONTINUE
            IF( SMIN.LE.ZERO ) THEN
               INFO = -11
            ELSE IF( N.GT.0 ) THEN
               SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
            ELSE
               SCOND = ONE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( LDB.LT.MAX( 1, N ) ) THEN
               INFO = -13
            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
               INFO = -15
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPBSVX', -INFO )
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL ZPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL ZLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
            RCEQU = LSAME( EQUED, 'Y' )
         END IF
      END IF
*
*     Scale the right-hand side.
*
      IF( RCEQU ) THEN
         DO 30 J = 1, NRHS
            DO 20 I = 1, N
               B( I, J ) = S( I )*B( I, J )
   20       CONTINUE
   30    CONTINUE
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the Cholesky factorization A = U'*U or A = L*L'.
*
         IF( UPPER ) THEN
            DO 40 J = 1, N
               J1 = MAX( J-KD, 1 )
               CALL ZCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
     $                     AFB( KD+1-J+J1, J ), 1 )
   40       CONTINUE
         ELSE
            DO 50 J = 1, N
               J2 = MIN( J+KD, N )
               CALL ZCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
   50       CONTINUE
         END IF
*
         CALL ZPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.NE.0 ) THEN
            IF( INFO.GT.0 )
     $         RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A.
*
      ANORM = ZLANHB( '1', UPLO, N, KD, AB, LDAB, RWORK )
*
*     Compute the reciprocal of the condition number of A.
*
      CALL ZPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, RWORK,
     $             INFO )
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
*
*     Compute the solution matrix X.
*
      CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL ZPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
     $             LDX, FERR, BERR, WORK, RWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      IF( RCEQU ) THEN
         DO 70 J = 1, NRHS
            DO 60 I = 1, N
               X( I, J ) = S( I )*X( I, J )
   60       CONTINUE
   70    CONTINUE
         DO 80 J = 1, NRHS
            FERR( J ) = FERR( J ) / SCOND
   80    CONTINUE
      END IF
*
      RETURN
*
*     End of ZPBSVX
*
      END
 
     |