File: slaptm.f

package info (click to toggle)
lapack99 3.0-14
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 37,008 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,567; sh: 28
file content (136 lines) | stat: -rw-r--r-- 4,039 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      SUBROUTINE SLAPTM( N, NRHS, ALPHA, D, E, X, LDX, BETA, B, LDB )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            LDB, LDX, N, NRHS
      REAL               ALPHA, BETA
*     ..
*     .. Array Arguments ..
      REAL               B( LDB, * ), D( * ), E( * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  SLAPTM multiplies an N by NRHS matrix X by a symmetric tridiagonal
*  matrix A and stores the result in a matrix B.  The operation has the
*  form
*
*     B := alpha * A * X + beta * B
*
*  where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices X and B.
*
*  ALPHA   (input) REAL
*          The scalar alpha.  ALPHA must be 1. or -1.; otherwise,
*          it is assumed to be 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix A.
*
*  E       (input) REAL array, dimension (N-1)
*          The (n-1) subdiagonal or superdiagonal elements of A.
*
*  X       (input) REAL array, dimension (LDX,NRHS)
*          The N by NRHS matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(N,1).
*
*  BETA    (input) REAL
*          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
*          it is assumed to be 1.
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the N by NRHS matrix B.
*          On exit, B is overwritten by the matrix expression
*          B := alpha * A * X + beta * B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(N,1).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Multiply B by BETA if BETA.NE.1.
*
      IF( BETA.EQ.ZERO ) THEN
         DO 20 J = 1, NRHS
            DO 10 I = 1, N
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE IF( BETA.EQ.-ONE ) THEN
         DO 40 J = 1, NRHS
            DO 30 I = 1, N
               B( I, J ) = -B( I, J )
   30       CONTINUE
   40    CONTINUE
      END IF
*
      IF( ALPHA.EQ.ONE ) THEN
*
*        Compute B := B + A*X
*
         DO 60 J = 1, NRHS
            IF( N.EQ.1 ) THEN
               B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
            ELSE
               B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
     $                     E( 1 )*X( 2, J )
               B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
     $                     D( N )*X( N, J )
               DO 50 I = 2, N - 1
                  B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
     $                        D( I )*X( I, J ) + E( I )*X( I+1, J )
   50          CONTINUE
            END IF
   60    CONTINUE
      ELSE IF( ALPHA.EQ.-ONE ) THEN
*
*        Compute B := B - A*X
*
         DO 80 J = 1, NRHS
            IF( N.EQ.1 ) THEN
               B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
            ELSE
               B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
     $                     E( 1 )*X( 2, J )
               B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
     $                     D( N )*X( N, J )
               DO 70 I = 2, N - 1
                  B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
     $                        D( I )*X( I, J ) - E( I )*X( I+1, J )
   70          CONTINUE
            END IF
   80    CONTINUE
      END IF
      RETURN
*
*     End of SLAPTM
*
      END