| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 
 |       SUBROUTINE DTIMGE( LINE, NM, MVAL, NNS, NSVAL, NNB, NBVAL, NLDA,
     $                   LDAVAL, TIMMIN, A, B, WORK, IWORK, RESLTS,
     $                   LDR1, LDR2, LDR3, NOUT )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993
*
*     .. Scalar Arguments ..
      CHARACTER*80       LINE
      INTEGER            LDR1, LDR2, LDR3, NLDA, NM, NNB, NNS, NOUT
      DOUBLE PRECISION   TIMMIN
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), LDAVAL( * ), MVAL( * ), NBVAL( * ),
     $                   NSVAL( * )
      DOUBLE PRECISION   A( * ), B( * ), RESLTS( LDR1, LDR2, LDR3, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DTIMGE times DGETRF, -TRS, and -TRI.
*
*  Arguments
*  =========
*
*  LINE    (input) CHARACTER*80
*          The input line that requested this routine.  The first six
*          characters contain either the name of a subroutine or a
*          generic path name.  The remaining characters may be used to
*          specify the individual routines to be timed.  See ATIMIN for
*          a full description of the format of the input line.
*
*  NM      (input) INTEGER
*          The number of values of M contained in the vector MVAL.
*
*  MVAL    (input) INTEGER array, dimension (NM)
*          The values of the matrix size M.
*
*  NNS     (input) INTEGER
*          The number of values of NRHS contained in the vector NSVAL.
*
*  NSVAL   (input) INTEGER array, dimension (NNS)
*          The values of the number of right hand sides NRHS.
*
*  NNB     (input) INTEGER
*          The number of values of NB contained in the vector NBVAL.
*
*  NBVAL   (input) INTEGER array, dimension (NNB)
*          The values of the blocksize NB.
*
*  NLDA    (input) INTEGER
*          The number of values of LDA contained in the vector LDAVAL.
*
*  LDAVAL  (input) INTEGER array, dimension (NLDA)
*          The values of the leading dimension of the array A.
*
*  TIMMIN  (input) DOUBLE PRECISION
*          The minimum time a subroutine will be timed.
*
*  A       (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)
*          where LDAMAX and NMAX are the maximum values permitted
*          for LDA and N.
*
*  B       (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NBMAX)
*          where NBMAX is the maximum value of the block size NB.
*
*  IWORK   (workspace) INTEGER array, dimension (NMAX)
*
*  RESLTS  (output) DOUBLE PRECISION array, dimension
*                   (LDR1,LDR2,LDR3,NSUBS)
*          The timing results for each subroutine over the relevant
*          values of N and NB.
*
*  LDR1    (input) INTEGER
*          The first dimension of RESLTS.  LDR1 >= max(4,NNB).
*
*  LDR2    (input) INTEGER
*          The second dimension of RESLTS.  LDR2 >= max(1,NM).
*
*  LDR3    (input) INTEGER
*          The third dimension of RESLTS.  LDR3 >= max(1,NLDA).
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NSUBS
      PARAMETER          ( NSUBS = 3 )
*     ..
*     .. Local Scalars ..
      CHARACTER*3        PATH
      CHARACTER*6        CNAME
      INTEGER            I, IC, ICL, ILDA, IM, INB, INFO, ISUB, LDA,
     $                   LDB, M, N, NB, NRHS
      DOUBLE PRECISION   OPS, S1, S2, TIME, UNTIME
*     ..
*     .. Local Arrays ..
      LOGICAL            TIMSUB( NSUBS )
      CHARACTER*6        SUBNAM( NSUBS )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DMFLOP, DOPLA, DSECND
      EXTERNAL           DMFLOP, DOPLA, DSECND
*     ..
*     .. External Subroutines ..
      EXTERNAL           ATIMCK, ATIMIN, DGETRF, DGETRI, DGETRS, DLACPY,
     $                   DPRTBL, DTIMMG, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Data statements ..
      DATA               SUBNAM / 'DGETRF', 'DGETRS', 'DGETRI' /
*     ..
*     .. Executable Statements ..
*
*     Extract the timing request from the input line.
*
      PATH( 1: 1 ) = 'Double precision'
      PATH( 2: 3 ) = 'GE'
      CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
      IF( INFO.NE.0 )
     $   GO TO 130
*
*     Check that N <= LDA for the input values.
*
      CNAME = LINE( 1: 6 )
      CALL ATIMCK( 2, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
      IF( INFO.GT.0 ) THEN
         WRITE( NOUT, FMT = 9999 )CNAME
         GO TO 130
      END IF
*
*     Do for each value of M:
*
      DO 100 IM = 1, NM
*
         M = MVAL( IM )
         N = M
*
*        Do for each value of LDA:
*
         DO 90 ILDA = 1, NLDA
            LDA = LDAVAL( ILDA )
*
*           Do for each value of NB in NBVAL.  Only the blocked
*           routines are timed in this loop since the other routines
*           are independent of NB.
*
            DO 50 INB = 1, NNB
               NB = NBVAL( INB )
               CALL XLAENV( 1, NB )
*
*              Time DGETRF
*
               IF( TIMSUB( 1 ) ) THEN
                  CALL DTIMMG( 1, M, N, A, LDA, 0, 0 )
      do ii=1, n
        do jj = 1, n
           A(ii, jj) = 3.3
        end do
      end do
                  IC = 0
                  S1 = DSECND( )
   10             CONTINUE
                  CALL DGETRF( M, N, A, LDA, IWORK, INFO )
                  S2 = DSECND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN ) THEN
                     CALL DTIMMG( 1, M, N, A, LDA, 0, 0 )
                     GO TO 10
                  END IF
*
*                 Subtract the time used in DTIMMG.
*
                  ICL = 1
                  S1 = DSECND( )
   20             CONTINUE
                  S2 = DSECND( )
                  UNTIME = S2 - S1
                  ICL = ICL + 1
                  IF( ICL.LE.IC ) THEN
                     CALL DTIMMG( 1, M, N, A, LDA, 0, 0 )
                     GO TO 20
                  END IF
*
                  TIME = ( TIME-UNTIME ) / DBLE( IC )
                  OPS = DOPLA( 'DGETRF', M, N, 0, 0, NB )
                  RESLTS( INB, IM, ILDA, 1 ) = DMFLOP( OPS, TIME, INFO )
*
               ELSE
                  IC = 0
                  CALL DTIMMG( 1, M, N, A, LDA, 0, 0 )
               END IF
*
*              Generate another matrix and factor it using DGETRF so
*              that the factored form can be used in timing the other
*              routines.
*
               IF( IC.NE.1 )
     $            CALL DGETRF( M, N, A, LDA, IWORK, INFO )
*
*              Time DGETRI
*
               IF( TIMSUB( 3 ) ) THEN
                  CALL DLACPY( 'Full', M, M, A, LDA, B, LDA )
                  IC = 0
                  S1 = DSECND( )
   30             CONTINUE
                  CALL DGETRI( M, B, LDA, IWORK, WORK, LDA*NB, INFO )
                  S2 = DSECND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN ) THEN
                     CALL DLACPY( 'Full', M, M, A, LDA, B, LDA )
                     GO TO 30
                  END IF
*
*                 Subtract the time used in DLACPY.
*
                  ICL = 1
                  S1 = DSECND( )
   40             CONTINUE
                  S2 = DSECND( )
                  UNTIME = S2 - S1
                  ICL = ICL + 1
                  IF( ICL.LE.IC ) THEN
                     CALL DLACPY( 'Full', M, M, A, LDA, B, LDA )
                     GO TO 40
                  END IF
*
                  TIME = ( TIME-UNTIME ) / DBLE( IC )
                  OPS = DOPLA( 'DGETRI', M, M, 0, 0, NB )
                  RESLTS( INB, IM, ILDA, 3 ) = DMFLOP( OPS, TIME, INFO )
               END IF
   50       CONTINUE
*
*           Time DGETRS
*
            IF( TIMSUB( 2 ) ) THEN
               DO 80 I = 1, NNS
                  NRHS = NSVAL( I )
                  LDB = LDA
                  CALL DTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                  IC = 0
                  S1 = DSECND( )
   60             CONTINUE
                  CALL DGETRS( 'No transpose', M, NRHS, A, LDA, IWORK,
     $                         B, LDB, INFO )
                  S2 = DSECND( )
                  TIME = S2 - S1
                  IC = IC + 1
                  IF( TIME.LT.TIMMIN ) THEN
                     CALL DTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                     GO TO 60
                  END IF
*
*                 Subtract the time used in DTIMMG.
*
                  ICL = 1
                  S1 = DSECND( )
   70             CONTINUE
                  S2 = DSECND( )
                  UNTIME = S2 - S1
                  ICL = ICL + 1
                  IF( ICL.LE.IC ) THEN
                     CALL DTIMMG( 0, M, NRHS, B, LDB, 0, 0 )
                     GO TO 70
                  END IF
*
                  TIME = ( TIME-UNTIME ) / DBLE( IC )
                  OPS = DOPLA( 'DGETRS', M, NRHS, 0, 0, 0 )
                  RESLTS( I, IM, ILDA, 2 ) = DMFLOP( OPS, TIME, INFO )
   80          CONTINUE
            END IF
   90    CONTINUE
  100 CONTINUE
*
*     Print a table of results for each timed routine.
*
      DO 120 ISUB = 1, NSUBS
         IF( .NOT.TIMSUB( ISUB ) )
     $      GO TO 120
         WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
         IF( NLDA.GT.1 ) THEN
            DO 110 I = 1, NLDA
               WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
  110       CONTINUE
         END IF
         WRITE( NOUT, FMT = * )
         IF( ISUB.EQ.1 ) THEN
            CALL DPRTBL( 'NB', 'N', NNB, NBVAL, NM, MVAL, NLDA, RESLTS,
     $                   LDR1, LDR2, NOUT )
         ELSE IF( ISUB.EQ.2 ) THEN
            CALL DPRTBL( 'NRHS', 'N', NNS, NSVAL, NM, MVAL, NLDA,
     $                   RESLTS( 1, 1, 1, 2 ), LDR1, LDR2, NOUT )
         ELSE IF( ISUB.EQ.3 ) THEN
            CALL DPRTBL( 'NB', 'N', NNB, NBVAL, NM, MVAL, NLDA,
     $                   RESLTS( 1, 1, 1, 3 ), LDR1, LDR2, NOUT )
         END IF
  120 CONTINUE
*
  130 CONTINUE
 9999 FORMAT( 1X, A6, ' timing run not attempted', / )
 9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
 9997 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
      RETURN
*
*     End of DTIMGE
*
      END
 |