File: sopgb.f

package info (click to toggle)
lapack99 3.0-14
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 37,008 kB
  • ctags: 32,714
  • sloc: fortran: 436,304; makefile: 1,567; sh: 28
file content (140 lines) | stat: -rw-r--r-- 3,721 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
      REAL             FUNCTION SOPGB( SUBNAM, M, N, KL, KU, IPIV )
*
*  -- LAPACK timing routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993
*
*     .. Scalar Arguments ..
      CHARACTER*6        SUBNAM
      INTEGER            KL, KU, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
*     ..
*
*  Purpose
*  =======
*
*  SOPGB counts operations for the LU factorization of a band matrix
*  xGBTRF.
*
*  Arguments
*  =========
*
*  SUBNAM  (input) CHARACTER*6
*          The name of the subroutine.
*
*  M       (input) INTEGER
*          The number of rows of the coefficient matrix.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the coefficient matrix.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals of the matrix.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals of the matrix.  KU >= 0.
*
*  IPIV    (input)  INTEGER array, dimension (min(M,N))
*          The vector of pivot indices from SGBTRF or CGBTRF.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            CORZ, SORD
      CHARACTER          C1
      CHARACTER*2        C2
      CHARACTER*3        C3
      INTEGER            I, J, JP, JU, KM
      REAL               ADDFAC, ADDS, MULFAC, MULTS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, LSAMEN
      EXTERNAL           LSAME, LSAMEN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      SOPGB = 0
      MULTS = 0
      ADDS = 0
      C1 = SUBNAM( 1: 1 )
      C2 = SUBNAM( 2: 3 )
      C3 = SUBNAM( 4: 6 )
      SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' )
      CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' )
      IF( .NOT.( SORD .OR. CORZ ) )
     $   RETURN
      IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) ) THEN
         ADDFAC = 1
         MULFAC = 1
      ELSE
         ADDFAC = 2
         MULFAC = 6
      END IF
*
*     --------------------------
*     GB:  General Band matrices
*     --------------------------
*
      IF( LSAMEN( 2, C2, 'GB' ) ) THEN
*
*        xGBTRF:  M, N, KL, KU  =>  M, N, KL, KU
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            JU = 1
            DO 10 J = 1, MIN( M, N )
               KM = MIN( KL, M-J )
               JP = IPIV( J )
               JU = MAX( JU, MIN( JP+KU, N ) )
               IF( KM.GT.0 ) THEN
                  MULTS = MULTS + KM*( 1+JU-J )
                  ADDS = ADDS + KM*( JU-J )
               END IF
   10       CONTINUE
         END IF
*
*     ---------------------------------
*     GT:  General Tridiagonal matrices
*     ---------------------------------
*
      ELSE IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
*        xGTTRF:  N  =>  M
*
         IF( LSAMEN( 3, C3, 'TRF' ) ) THEN
            MULTS = 2*( M-1 )
            ADDS = M - 1
            DO 20 I = 1, M - 2
               IF( IPIV( I ).NE.I )
     $            MULTS = MULTS + 1
   20       CONTINUE
*
*        xGTTRS:  N, NRHS  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN
            MULTS = 4*N*( M-1 )
            ADDS = 3*N*( M-1 )
*
*        xGTSV:   N, NRHS  =>  M, N
*
         ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN
            MULTS = ( 4*N+2 )*( M-1 )
            ADDS = ( 3*N+1 )*( M-1 )
            DO 30 I = 1, M - 2
               IF( IPIV( I ).NE.I )
     $            MULTS = MULTS + 1
   30       CONTINUE
         END IF
      END IF
*
      SOPGB = MULFAC*MULTS + ADDFAC*ADDS
      RETURN
*
*     End of SOPGB
*
      END