1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef LAPACK_FLOPS_HH
#define LAPACK_FLOPS_HH
#include "lapack.hh"
#include "blas/flops.hh"
#include <complex>
namespace lapack {
//==============================================================================
// Generic formulas come from LAWN 41
// BLAS formulas generally assume alpha == 1 or -1, and beta == 1, -1, or 0;
// otherwise add some smaller order term.
// Some formulas are wrong when m, n, or k == 0; flops should be 0
// (e.g., syr2k, unmqr).
// Formulas may give negative results for invalid combinations of m, n, k
// (e.g., ungqr, unmqr).
//------------------------------------------------------------ getrf
// LAWN 41 omits (m < n) case
inline double fmuls_getrf(double m, double n)
{
return (m >= n)
? (0.5*m*n*n - 1./6*n*n*n + 0.5*m*n - 0.5*n*n + 2/3.*n)
: (0.5*n*m*m - 1./6*m*m*m + 0.5*n*m - 0.5*m*m + 2/3.*m);
}
inline double fadds_getrf(double m, double n)
{
return (m >= n)
? (0.5*m*n*n - 1./6*n*n*n - 0.5*m*n + 1./6*n)
: (0.5*n*m*m - 1./6*m*m*m - 0.5*n*m + 1./6*m);
}
//------------------------------------------------------------ getri
inline double fmuls_getri(double n)
{ return 2/3.*n*n*n + 0.5*n*n + 5./6*n; }
inline double fadds_getri(double n)
{ return 2/3.*n*n*n - 1.5*n*n + 5./6*n; }
//------------------------------------------------------------ getrs
inline double fmuls_getrs(double n, double nrhs)
{ return nrhs*n*n; }
inline double fadds_getrs(double n, double nrhs)
{ return nrhs*n*(n - 1); }
//------------------------------------------------------------ potrf
inline double fmuls_potrf(double n)
{ return 1./6*n*n*n + 0.5*n*n + 1./3.*n; }
inline double fadds_potrf(double n)
{ return 1./6*n*n*n - 1./6*n; }
//------------------------------------------------------------ potri
inline double fmuls_potri(double n)
{ return 1./3.*n*n*n + n*n + 2/3.*n; }
inline double fadds_potri(double n)
{ return 1./3.*n*n*n - 0.5*n*n + 1./6*n; }
//------------------------------------------------------------ potrs
inline double fmuls_potrs(double n, double nrhs)
{ return nrhs*n*(n + 1); }
inline double fadds_potrs(double n, double nrhs)
{ return nrhs*n*(n - 1); }
//------------------------------------------------------------ pbtrf
inline double fmuls_pbtrf(double n, double k)
{ return n*(1./2.*k*k + 3./2.*k + 1) - 1./3.*k*k*k - k*k - 2./3.*k; }
inline double fadds_pbtrf(double n, double k)
{ return n*(1./2.*k*k + 1./2.*k) - 1./3.*k*k*k - 1./2.*k*k - 1./6.*k; }
//------------------------------------------------------------ pbtrs
inline double fmuls_pbtrs(double n, double nrhs, double k)
{ return nrhs*(2*n*k + 2*n - k*k - k); }
inline double fadds_pbtrs(double n, double nrhs, double k)
{ return nrhs*(2*n*k - k*k - k); }
//------------------------------------------------------------ sytrf
inline double fmuls_sytrf(double n)
{ return 1/6.*n*n*n + 0.5*n*n + 10/3.*n; }
inline double fadds_sytrf(double n)
{ return 1/6.*n*n*n - 1/6.*n; }
//------------------------------------------------------------ sytri
inline double fmuls_sytri(double n)
{ return 1/3.*n*n*n + n*n + 2/3.*n; }
inline double fadds_sytri(double n)
{ return 1/3.*n*n*n - 1/3.*n; }
//------------------------------------------------------------ sytrs
inline double fmuls_sytrs(double n, double nrhs)
{ return nrhs*n*(n + 1); }
inline double fadds_sytrs(double n, double nrhs)
{ return nrhs*n*(n - 1); }
//------------------------------------------------------------ geqrf
inline double fmuls_geqrf(double m, double n)
{
return (m > n)
? (m*n*n - 1./3.*n*n*n + m*n + 0.5*n*n + 23./6*n)
: (n*m*m - 1./3.*m*m*m + 2*n*m - 0.5*m*m + 23./6*m);
}
inline double fadds_geqrf(double m, double n)
{
return (m > n)
? (m*n*n - 1./3.*n*n*n + 0.5*n*n + 5./6*n)
: (n*m*m - 1./3.*m*m*m + n*m - 0.5*m*m + 5./6*m);
}
//------------------------------------------------------------ geqrt
// TODO: this seems odd -- should it match geqrf? At least be O(mn^2)?
inline double fmuls_geqrt(double m, double n)
{ return 0.5*m*n; }
inline double fadds_geqrt(double m, double n)
{ return 0.5*m*n; }
//------------------------------------------------------------ geqlf
inline double fmuls_geqlf(double m, double n)
{ return fmuls_geqrf(m, n); }
inline double fadds_geqlf(double m, double n)
{ return fadds_geqrf(m, n); }
//------------------------------------------------------------ gerqf
inline double fmuls_gerqf(double m, double n)
{
return (m > n)
? (m*n*n - 1./3.*n*n*n + m*n + 0.5*n*n + 29./6*n)
: (n*m*m - 1./3.*m*m*m + 2*n*m - 0.5*m*m + 29./6*m);
}
inline double fadds_gerqf(double m, double n)
{
return (m > n)
? (m*n*n - 1./3.*n*n*n + m*n - 0.5*n*n + 5./6*n)
: (n*m*m - 1./3.*m*m*m + 0.5*m*m + 5./6*m);
}
//------------------------------------------------------------ gelqf
inline double fmuls_gelqf(double m, double n)
{ return fmuls_gerqf(m, n); }
inline double fadds_gelqf(double m, double n)
{ return fadds_gerqf(m, n); }
//------------------------------------------------------------ ungqr
inline double fmuls_ungqr(double m, double n, double k)
{ return 2*m*n*k - (m + n)*k*k + 2/3.*k*k*k + 2*n*k - k*k - 5./3.*k; }
inline double fadds_ungqr(double m, double n, double k)
{ return 2*m*n*k - (m + n)*k*k + 2/3.*k*k*k + n*k - m*k + 1./3.*k; }
//------------------------------------------------------------ ungql
inline double fmuls_ungql(double m, double n, double k)
{ return fmuls_ungqr(m, n, k); }
inline double fadds_ungql(double m, double n, double k)
{ return fadds_ungqr(m, n, k); }
//------------------------------------------------------------ ungrq
inline double fmuls_ungrq(double m, double n, double k)
{ return 2*m*n*k - (m + n)*k*k + 2/3.*k*k*k + m*k + n*k - k*k - 2/3.*k; }
inline double fadds_ungrq(double m, double n, double k)
{ return 2*m*n*k - (m + n)*k*k + 2/3.*k*k*k + m*k - n*k + 1./3.*k; }
//------------------------------------------------------------ unglq
inline double fmuls_unglq(double m, double n, double k)
{ return fmuls_ungrq(m, n, k); }
inline double fadds_unglq(double m, double n, double k)
{ return fadds_ungrq(m, n, k); }
//------------------------------------------------------------ unmqr
inline double fmuls_unmqr(lapack::Side side, double m, double n, double k)
{
return (side == lapack::Side::Left)
? (2*n*m*k - n*k*k + 2*n*k)
: (2*n*m*k - m*k*k + m*k + n*k - 0.5*k*k + 0.5*k);
}
inline double fadds_unmqr(lapack::Side side, double m, double n, double k)
{
return (side == lapack::Side::Left)
? (2*n*m*k - n*k*k + n*k)
: (2*n*m*k - m*k*k + m*k);
}
//------------------------------------------------------------ unmql
inline double fmuls_unmql(lapack::Side side, double m, double n, double k)
{ return fmuls_unmqr(side, m, n, k); }
inline double fadds_unmql(lapack::Side side, double m, double n, double k)
{ return fadds_unmqr(side, m, n, k); }
//------------------------------------------------------------ unmrq
inline double fmuls_unmrq(lapack::Side side, double m, double n, double k)
{ return fmuls_unmqr(side, m, n, k); }
inline double fadds_unmrq(lapack::Side side, double m, double n, double k)
{ return fadds_unmqr(side, m, n, k); }
//------------------------------------------------------------ unmlq
inline double fmuls_unmlq(lapack::Side side, double m, double n, double k)
{ return fmuls_unmqr(side, m, n, k); }
inline double fadds_unmlq(lapack::Side side, double m, double n, double k)
{ return fadds_unmqr(side, m, n, k); }
//------------------------------------------------------------ trtri
inline double fmuls_trtri(double n)
{ return 1./6*n*n*n + 0.5*n*n + 1./3.*n; }
inline double fadds_trtri(double n)
{ return 1./6*n*n*n - 0.5*n*n + 1./3.*n; }
//------------------------------------------------------------ gehrd
inline double fmuls_gehrd(double n)
{ return 5./3.*n*n*n + 0.5*n*n - 7./6*n; }
inline double fadds_gehrd(double n)
{ return 5./3.*n*n*n - n*n - 2/3.*n; }
//------------------------------------------------------------ sytrd
inline double fmuls_sytrd(double n)
{ return 2/3.*n*n*n + 2.5*n*n - 1./6*n; }
inline double fadds_sytrd(double n)
{ return 2/3.*n*n*n + n*n - 8./3.*n; }
inline double fmuls_hetrd(double n)
{ return fmuls_sytrd(n); }
inline double fadds_hetrd(double n)
{ return fadds_sytrd(n); }
//------------------------------------------------------------ gebrd
inline double fmuls_gebrd(double m, double n)
{
return (m >= n)
? (2*m*n*n - 2/3.*n*n*n + 2*n*n + 20./3.*n)
: (2*n*m*m - 2/3.*m*m*m + 2*m*m + 20./3.*m);
}
inline double fadds_gebrd(double m, double n)
{
return (m >= n)
? (2*m*n*n - 2/3.*n*n*n + n*n - m*n + 5./3.*n)
: (2*n*m*m - 2/3.*m*m*m + m*m - n*m + 5./3.*m);
}
//------------------------------------------------------------ larfg
inline double fmuls_larfg(double n)
{ return 2*n; }
inline double fadds_larfg(double n)
{ return n; }
//------------------------------------------------------------ geadd
inline double fmuls_geadd(double m, double n)
{ return 2*m*n; }
inline double fadds_geadd(double m, double n)
{ return m*n; }
//------------------------------------------------------------ lauum
inline double fmuls_lauum(double n)
{ return fmuls_potri(n) - fmuls_trtri(n); }
inline double fadds_lauum(double n)
{ return fadds_potri(n) - fadds_trtri(n); }
//------------------------------------------------------------ lange
inline double fmuls_lange(lapack::Norm norm, double m, double n)
{ return norm == lapack::Norm::Fro ? m*n : 0; }
inline double fadds_lange(lapack::Norm norm, double m, double n)
{
switch (norm) {
case lapack::Norm::One: return (m-1)*n;
case lapack::Norm::Inf: return (n-1)*m;
case lapack::Norm::Fro: return m*n-1;
default: return 0;
}
}
//------------------------------------------------------------ lanhe
inline double fmuls_lanhe(lapack::Norm norm, double n)
{ return norm == lapack::Norm::Fro ? n*(n+1)/2 : 0; }
inline double fadds_lanhe(lapack::Norm norm, double n)
{
switch (norm) {
case lapack::Norm::One: return (n-1)*n;
case lapack::Norm::Inf: return (n-1)*n;
case lapack::Norm::Fro: return n*(n+1)/2-1;
default: return 0;
}
}
//==============================================================================
// template class. Example:
// gbyte< float >::gemv( m, n ) yields bytes transferred for sgemv.
// gbyte< std::complex<float> >::gemv( m, n ) yields bytes transferred for cgemv.
//==============================================================================
template< typename T >
class Gbyte:
public blas::Gbyte<T>
{
};
//==============================================================================
// template class. Example:
// gflop< float >::getrf( m, n ) yields flops for sgetrf.
// gflop< std::complex<float> >::getrf( m, n ) yields flops for cgetrf.
//==============================================================================
template< typename T >
class Gflop:
public blas::Gflop<T>
{
public:
using blas::Gflop<T>::mul_ops;
using blas::Gflop<T>::add_ops;
// LU
static double gesv(double n, double nrhs)
{ return getrf(n, n) + getrs(n, nrhs); }
static double getrf(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_getrf(m, n) + add_ops*fadds_getrf(m, n)); }
static double getri(double n)
{ return 1e-9 * (mul_ops*fmuls_getri(n) + add_ops*fadds_getri(n)); }
static double getrs(double n, double nrhs)
{ return 1e-9 * (mul_ops*fmuls_getrs(n, nrhs) + add_ops*fadds_getrs(n, nrhs)); }
// Cholesky
static double posv(double n, double nrhs)
{ return potrf(n) + potrs(n, nrhs); }
static double potrf(double n)
{ return 1e-9 * (mul_ops*fmuls_potrf(n) + add_ops*fadds_potrf(n)); }
static double potri(double n)
{ return 1e-9 * (mul_ops*fmuls_potri(n) + add_ops*fadds_potri(n)); }
static double potrs(double n, double nrhs)
{ return 1e-9 * (mul_ops*fmuls_potrs(n, nrhs) + add_ops*fadds_potrs(n, nrhs)); }
// Band Cholesky
static double pbsv(double n, double nrhs, double k)
{ return pbtrf(n, k) + pbtrs(n, nrhs, k); }
static double pbtrf(double n, double k)
{ return 1e-9 * (mul_ops*fmuls_pbtrf(n, k) + add_ops*fadds_pbtrf(n, k)); }
static double pbtrs(double n, double nrhs, double k)
{ return 1e-9 * (mul_ops*fmuls_pbtrs(n, nrhs, k) + add_ops*fadds_pbtrs(n, nrhs, k)); }
// LDL^T
static double sysv(double n, double nrhs)
{ return sytrf(n) + sytrs(n, nrhs); }
static double sytrf(double n)
{ return 1e-9 * (mul_ops*fmuls_sytrf(n) + add_ops*fadds_sytrf(n)); }
static double sytri(double n)
{ return 1e-9 * (mul_ops*fmuls_sytri(n) + add_ops*fadds_sytri(n)); }
static double sytrs(double n, double nrhs)
{ return 1e-9 * (mul_ops*fmuls_sytrs(n, nrhs) + add_ops*fadds_sytrs(n, nrhs)); }
static double hesv(double n, double nrhs)
{ return sysv(n, nrhs); }
static double hetrf(double n)
{ return sytrf(n); }
static double hetri(double n)
{ return sytri(n); }
static double hetrs(double n, double nrhs)
{ return sytrs(n, nrhs); }
// QR, QL, RQ, LQ
static double geqrf(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_geqrf(m, n) + add_ops*fadds_geqrf(m, n)); }
static double geqrt(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_geqrt(m, n) + add_ops*fadds_geqrt(m, n)); }
static double geqlf(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_geqlf(m, n) + add_ops*fadds_geqlf(m, n)); }
static double gerqf(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_gerqf(m, n) + add_ops*fadds_gerqf(m, n)); }
static double gelqf(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_gelqf(m, n) + add_ops*fadds_gelqf(m, n)); }
// generate Q
static double ungqr(double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_ungqr(m, n, k) + add_ops*fadds_ungqr(m, n, k)); }
static double orgqr(double m, double n, double k)
{ return ungqr(m, n, k); }
static double ungql(double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_ungql(m, n, k) + add_ops*fadds_ungql(m, n, k)); }
static double orgql(double m, double n, double k)
{ return ungql(m, n, k); }
static double ungrq(double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_ungrq(m, n, k) + add_ops*fadds_ungrq(m, n, k)); }
static double orgrq(double m, double n, double k)
{ return ungrq(m, n, k); }
static double unglq(double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_unglq(m, n, k) + add_ops*fadds_unglq(m, n, k)); }
static double orglq(double m, double n, double k)
{ return unglq(m, n, k); }
// multiply by Q
static double unmqr(lapack::Side side, double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_unmqr(side, m, n, k) + add_ops*fadds_unmqr(side, m, n, k)); }
static double ormqr(lapack::Side side, double m, double n, double k)
{ return unmqr(side, m, n, k); }
static double unmql(lapack::Side side, double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_unmql(side, m, n, k) + add_ops*fadds_unmql(side, m, n, k)); }
static double ormql(lapack::Side side, double m, double n, double k)
{ return unmql(side, m, n, k); }
static double unmrq(lapack::Side side, double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_unmrq(side, m, n, k) + add_ops*fadds_unmrq(side, m, n, k)); }
static double ormrq(lapack::Side side, double m, double n, double k)
{ return unmrq(side, m, n, k); }
static double unmlq(lapack::Side side, double m, double n, double k)
{ return 1e-9 * (mul_ops*fmuls_unmlq(side, m, n, k) + add_ops*fadds_unmlq(side, m, n, k)); }
static double ormlq(lapack::Side side, double m, double n, double k)
{ return unmlq(side, m, n, k); }
// least squares
static double gels(double m, double n, double nrhs)
{
blas::Side left = blas::Side::Left;
return (m >= n
? geqrf(m, n) + unmqr(left, m, nrhs, n) + blas::Gflop<T>::trsm(left, n, nrhs)
: gelqf(m, n) + unmlq(left, n, nrhs, m) + blas::Gflop<T>::trsm(left, m, nrhs));
}
// triangle inverse
static double trtri(double n)
{ return 1e-9 * (mul_ops*fmuls_trtri(n) + add_ops*fadds_trtri(n)); }
// Hessenberg reduction (non-symmetric eigenvalue)
static double gehrd(double n)
{ return 1e-9 * (mul_ops*fmuls_gehrd(n) + add_ops*fadds_gehrd(n)); }
// tridiagonal reduction (symmetric eigenvalue)
static double hetrd(double n)
{ return 1e-9 * (mul_ops*fmuls_sytrd(n) + add_ops*fadds_sytrd(n)); }
static double sytrd(double n)
{ return hetrd(n); }
// bidiagonal reduction (SVD)
static double gebrd(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_gebrd(m, n) + add_ops*fadds_gebrd(m, n)); }
// Householder reflector generate
static double larfg(double n)
{ return 1e-9 * (mul_ops*fmuls_larfg(n) + add_ops*fadds_larfg(n)); }
// matrix add
static double geadd(double m, double n)
{ return 1e-9 * (mul_ops*fmuls_geadd(m, n) + add_ops*fadds_geadd(m, n)); }
// U^H*U or L*L^T
static double lauum(double n)
{ return 1e-9 * (mul_ops*fmuls_lauum(n) + add_ops*fadds_lauum(n)); }
// norm
static double lange(lapack::Norm norm, double m, double n)
{ return 1e-9 * (mul_ops*fmuls_lange(norm, m, n) + add_ops*fadds_lange(norm, m, n)); }
static double lanhe(lapack::Norm norm, double n)
{ return 1e-9 * (mul_ops*fmuls_lanhe(norm, n) + add_ops*fadds_lanhe(norm, n)); }
static double lansy(lapack::Norm norm, double n)
{ return lanhe(norm, n); }
};
} // namespace lapack
#endif // LAPACK_FLOPS_HH
|