1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "blas.hh"
#include "lapack.hh"
#include "error.hh"
#include "check_ortho.hh"
#include <vector>
// -----------------------------------------------------------------------------
// Computes error measures:
// result[ 0 ] = || A - U Sigma VT || / (||A|| max( m, n )),
// if jobu != NoVec and jobvt != NoVec.
// result[ 1 ] = || I - U^H U || / m, if jobu != NoVec.
// result[ 2 ] = || I - VT VT^H || / n, if jobvt != NoVec.
// result[ 3 ] = 0 if Sigma has non-negative values in non-increasing order,
// else >= 1.
template< typename scalar_t >
void check_svd(
lapack::Job jobu, lapack::Job jobvt,
int64_t m, int64_t n,
scalar_t const* A, int64_t lda,
blas::real_type< scalar_t > const* Sigma,
scalar_t const* U, int64_t ldu,
scalar_t const* VT, int64_t ldvt,
blas::real_type< scalar_t > result[ 4 ] )
{
using namespace blas;
using namespace lapack;
using real_t = blas::real_type< scalar_t >;
if (jobu == Job::NoVec) {
U = nullptr;
}
if (jobvt == Job::NoVec) {
VT = nullptr;
}
int64_t minmn = min( m, n );
int64_t maxmn = max( m, n );
if (U != nullptr && VT != nullptr) {
// check || A - U Sigma VT || / (||A|| max( m, n ))
// R = A
std::vector< scalar_t > R( m * n );
lacpy( MatrixType::General, m, n, A, lda, &R[ 0 ], m );
if (m >= n) {
// SVT = Sigma * VT (row scaling)
std::vector< scalar_t > SVT( n * n );
lacpy( MatrixType::General, n, n, VT, ldvt, &SVT[ 0 ], n );
for (int64_t j = 0; j < n; ++j) {
for (int64_t i = 0; i < n; ++i) {
SVT[ i + j*n ] *= Sigma[ i ];
}
}
// R = A - U * (SVT)
gemm( Layout::ColMajor, Op::NoTrans, Op::NoTrans, m, n, minmn /* == n */,
-1.0, U, ldu,
&SVT[ 0 ], n,
1.0, &R[ 0 ], m );
}
else {
// US = U * Sigma (col scaling)
std::vector< scalar_t > US( m * m );
lacpy( MatrixType::General, m, m, U, ldu, &US[ 0 ], m );
for (int64_t j = 0; j < m; ++j) {
scal( m, Sigma[ j ], &US[ j*m ], 1 );
}
// R = A - (US) * VT
gemm( Layout::ColMajor, Op::NoTrans, Op::NoTrans, m, n, minmn /* == m */,
-1.0, &US[ 0 ], m,
VT, ldvt,
1.0, &R[ 0 ], m );
}
real_t eps = std::numeric_limits< real_t >::epsilon();
real_t Anorm = lange( Norm::One, m, n, A, lda );
real_t resid = lange( Norm::One, m, n, &R[ 0 ], m );
if (Anorm >= resid) {
resid = resid / Anorm / maxmn;
}
else if (Anorm > 0) {
if (Anorm < 1)
resid = min( resid, maxmn * Anorm ) / Anorm / maxmn;
else
resid = min( resid / Anorm, maxmn ) / maxmn;
}
else { // Anorm == 0
resid = 1 / eps;
}
result[ 0 ] = resid;
}
if (U != nullptr) {
// check || I - U^H U || / m
int64_t ucols = (jobu == Job::AllVec ? m : minmn);
result[ 1 ] = check_orthogonality( RowCol::Col, m, ucols, U, ldu );
}
if (VT != nullptr) {
// check || I - VT VT^H || / n
int64_t vrows = (jobvt == Job::AllVec ? n : minmn);
result[ 2 ] = check_orthogonality( RowCol::Row, vrows, n, VT, ldvt );
}
// Check that Sigma >= 0 and Sigma is non-increasing.
result[ 3 ] = 0;
for (int64_t i = 0; i < minmn; ++i) {
if (Sigma[ i ] < 0 || (i < minmn - 1 && Sigma[ i ] < Sigma[ i+1 ]))
result[ 3 ] += 1;
}
}
|