1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#ifndef MATRIX_GENERATOR_HH
#define MATRIX_GENERATOR_HH
#include <algorithm> // copy, swap
#include "test.hh"
#include "matrix_params.hh"
#include "lapack.hh"
namespace lapack {
// -----------------------------------------------------------------------------
const int64_t idist_rand = 1;
const int64_t idist_rands = 2;
const int64_t idist_randn = 3;
enum class TestMatrixType {
rand = 1, // maps to larnv idist
rands = 2, // maps to larnv idist
randn = 3, // maps to larnv idist
zero,
identity,
jordan,
diag,
svd,
poev,
heev,
geev,
geevx,
};
enum class Dist {
rand = 1, // maps to larnv idist
rands = 2, // maps to larnv idist
randn = 3, // maps to larnv idist
arith,
geo,
cluster0,
cluster1,
rarith,
rgeo,
rcluster0,
rcluster1,
logrand,
specified,
none,
};
// -----------------------------------------------------------------------------
/// Simple vector class that can wrap existing memory or allocate its own memory.
//
// Uses copy-and-swap idiom.
// https://stackoverflow.com/questions/3279543/what-is-the-copy-and-swap-idiom
template< typename scalar_t >
class Vector
{
public:
// constructor allocates new memory (unless n == 0)
Vector( int64_t in_n=0 ):
n ( in_n ),
data_( n > 0 ? new scalar_t[n] : nullptr ),
own_ ( true )
{
if (n < 0) { throw std::exception(); }
}
// constructor wraps existing memory; caller maintains ownership
Vector( scalar_t* data, int64_t in_n ):
n ( in_n ),
data_( data ),
own_ ( false )
{
if (n < 0) { throw std::exception(); }
}
// copy constructor
Vector( Vector const &other ):
n ( other.n ),
data_( nullptr ),
own_ ( other.own_ )
{
if (other.own_) {
if (n > 0) {
data_ = new scalar_t[n];
std::copy( other.data_, other.data_ + n, data_ );
}
}
else {
data_ = other.data_;
}
}
// move constructor, using copy & swap idiom
Vector( Vector&& other )
: Vector()
{
swap( *this, other );
}
// assignment operator, using copy & swap idiom
Vector& operator= (Vector other)
{
swap( *this, other );
return *this;
}
// destructor deletes memory if constructor allocated it
// (i.e., not if wrapping existing memory)
~Vector()
{
if (own_) {
delete[] data_;
data_ = nullptr;
}
}
friend void swap( Vector& first, Vector& second )
{
using std::swap;
swap( first.n, second.n );
swap( first.data_, second.data_ );
swap( first.own_, second.own_ );
}
// returns pointer to element i, because that's what we normally need to
// call BLAS / LAPACK, which avoids littering the code with &.
scalar_t* operator () ( int64_t i ) { return &data_[ i ]; }
scalar_t const* operator () ( int64_t i ) const { return &data_[ i ]; }
// return element i itself, as usual in C/C++.
// unfortunately, this won't work for matrices.
scalar_t& operator [] ( int64_t i ) { return data_[ i ]; }
scalar_t const& operator [] ( int64_t i ) const { return data_[ i ]; }
int64_t size() const { return n; }
bool own() const { return own_; }
public:
int64_t n;
private:
scalar_t *data_;
bool own_;
};
// -----------------------------------------------------------------------------
/// Simple matrix class that can wrap existing memory or allocate its own memory.
template< typename scalar_t >
class Matrix
{
public:
// constructor allocates new memory
// ld = m by default
Matrix( int64_t in_m, int64_t in_n, int64_t in_ld=0 ):
m( in_m ),
n( in_n ),
ld( in_ld == 0 ? m : in_ld ),
data_( ld*n )
{
if (m < 0) { throw std::exception(); }
if (n < 0) { throw std::exception(); }
if (ld < m) { throw std::exception(); }
}
// constructor wraps existing memory; caller maintains ownership
// ld = m by default
Matrix( scalar_t* data, int64_t in_m, int64_t in_n, int64_t in_ld=0 ):
m( in_m ),
n( in_n ),
ld( in_ld == 0 ? m : in_ld ),
data_( data, ld*n )
{
if (m < 0) { throw std::exception(); }
if (n < 0) { throw std::exception(); }
if (ld < m) { throw std::exception(); }
}
int64_t size() const { return data_.size(); }
bool own() const { return data_.own(); }
// returns pointer to element (i,j), because that's what we normally need to
// call BLAS / LAPACK, which avoids littering the code with &.
scalar_t* operator () ( int i, int j )
{ return &data_[ i + j*ld ]; }
scalar_t const* operator () ( int i, int j ) const
{ return &data_[ i + j*ld ]; }
public:
int64_t m, n, ld;
protected:
Vector<scalar_t> data_;
};
// -----------------------------------------------------------------------------
template< typename scalar_t >
void generate_matrix(
MatrixParams& params,
Matrix< scalar_t >& A,
Vector< blas::real_type<scalar_t> >& sigma );
template< typename scalar_t >
void generate_matrix(
MatrixParams& params,
int64_t m, int64_t n,
scalar_t* A, int64_t lda,
blas::real_type<scalar_t>* sigma=nullptr );
void generate_matrix_usage();
} // namespace lapack
#endif // #ifndef MATRIX_GENERATOR_HH
|