1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include "cblas_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_gbrfs_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::Op trans = params.trans();
int64_t n = params.dim.n();
int64_t kl = params.kl();
int64_t ku = params.ku();
int64_t nrhs = params.nrhs();
int64_t align = params.align();
int64_t verbose = params.verbose();
real_t eps = std::numeric_limits< real_t >::epsilon();
real_t tol = params.tol() * eps;
// mark non-standard output values
params.ref_time();
//params.ref_gflops();
//params.gflops();
if (! run)
return;
// ---------- setup
// AB could use kd = kl + ku + 1, but for simplicity make AB = AFB.
int64_t kd = 2*kl + ku + 1; // number of diagonals in factor
int64_t ldab = roundup( kd, align );
int64_t ldafb = ldab;
int64_t ldb = roundup( blas::max( 1, n ), align );
int64_t ldx = ldb;
size_t size_AB = (size_t) ldab * n;
size_t size_AFB = size_AB;
size_t size_ipiv = (size_t) (n);
size_t size_B = (size_t) ldb * nrhs;
size_t size_X = size_B;
size_t size_ferr = (size_t) (nrhs);
size_t size_berr = (size_t) (nrhs);
std::vector< scalar_t > AB( size_AB );
std::vector< scalar_t > AFB( size_AFB );
std::vector< int64_t > ipiv_tst( size_ipiv );
std::vector< lapack_int > ipiv_ref( size_ipiv );
std::vector< scalar_t > B( size_B );
std::vector< scalar_t > X_tst( size_X );
std::vector< scalar_t > X_ref( size_X );
std::vector< real_t > ferr_tst( size_ferr );
std::vector< real_t > ferr_ref( size_ferr );
std::vector< real_t > berr_tst( size_berr );
std::vector< real_t > berr_ref( size_berr );
int64_t idist = 1;
int64_t iseed[4] = { 0, 1, 2, 3 };
lapack::larnv( idist, iseed, AB.size(), &AB[0] );
int64_t iseed_B[4];
std::copy( iseed, iseed+4, iseed_B );
lapack::larnv( idist, iseed, B.size(), &B[0] );
AFB = AB;
X_tst = B;
if (verbose >= 1) {
printf( "\n"
"AB n=%5lld, kl=%5lld, ku=%5lld, kd=%5lld, ldab=%5lld\n"
"B n=%5lld, nrhs=%5lld, ldb=%5lld\n",
llong( n ), llong( kl ), llong( ku ), llong( kd ), llong( ldab ),
llong( n ), llong( nrhs ), llong( ldb ) );
}
if (verbose >= 2) {
printf( "Input data in rows 0 to kl-1 are ignored.\n" );
printf( "AB = " ); print_matrix( kd, n, &AB[0], ldab );
printf( "B = " ); print_matrix( n, nrhs, &B[0], ldb );
}
// Factor
int64_t info = lapack::gbtrf( n, n, kl, ku, &AFB[0], ldafb, &ipiv_tst[0] );
if (info != 0) {
fprintf( stderr, "lapack::gbtrf returned error %lld\n", llong( info ) );
}
// Solve in X_tst
info = lapack::gbtrs( trans, n, kl, ku, nrhs, &AFB[0], ldafb, &ipiv_tst[0], &X_tst[0], ldx );
if (info != 0) {
fprintf( stderr, "lapack::gbtrs returned error %lld\n", llong( info ) );
}
X_ref = X_tst;
if (verbose >= 2) {
printf( "A_factor = " ); print_matrix( kd, n, &AFB[0], ldafb );
printf( "X = " ); print_matrix( n, nrhs, &X_tst[0], ldx );
}
std::copy (ipiv_tst.begin(), ipiv_tst.end(), ipiv_ref.begin() );
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
// Refine solution in X_tst, using original AB and B, factored AFB.
// AB rows 0:kl-1 are ignored; start in row kl.
int64_t info_tst = lapack::gbrfs(
trans, n, kl, ku, nrhs,
&AB[ kl ], ldab, &AFB[0], ldafb, &ipiv_tst[0],
&B[0], ldb, &X_tst[0], ldx, &ferr_tst[0], &berr_tst[0] );
time = testsweeper::get_wtime() - time;
if (info_tst != 0) {
fprintf( stderr, "lapack::gbrfs returned error %lld\n", llong( info_tst ) );
}
params.time() = time;
//double gflop = lapack::Gflop< scalar_t >::gbrfs( trans, n, kl, ku, nrhs );
//params.gflops() = gflop / time;
if (verbose >= 2) {
printf( "Xrfs = " ); print_matrix( n, nrhs, &X_tst[0], ldx );
printf( "ferr = " ); print_vector( n, &ferr_tst[0], 1 );
printf( "berr = " ); print_vector( n, &berr_tst[0], 1 );
}
if (params.check() == 'y') {
// ---------- check error
// Relative backwards error = ||b - Ax|| / (n * ||A|| * ||x||).
// No gbmm, so loop over RHS.
// AB rows 0:kl-1 are ignored; start in row kl.
for (int64_t j = 0; j < nrhs; ++j) {
// B_ref -= A * B_tst
cblas_gbmv( CblasColMajor, cblas_trans_const(trans), n, n, kl, ku,
-1.0, &AB[ kl ], ldab,
&X_tst[ j*ldx ], 1,
1.0, &B[ j*ldb ], 1 );
}
if (verbose >= 2) {
printf( "R = " ); print_matrix( n, nrhs, &B[0], ldb );
}
real_t error = lapack::lange( lapack::Norm::One, n, nrhs, &B[0], ldb );
real_t Xnorm = lapack::lange( lapack::Norm::One, n, nrhs, &X_tst[0], ldx );
real_t Anorm = lapack::langb( lapack::Norm::One, n, kl, ku, &AB[ kl ], ldab );
error /= (n * Anorm * Xnorm);
params.error() = error;
params.okay() = (error < tol);
// Reset B for ref using saved seed.
lapack::larnv( idist, iseed_B, B.size(), &B[0] );
}
if (params.ref() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_gbrfs(
to_char( trans ), n, kl, ku, nrhs,
&AB[ kl ], ldab, &AFB[0], ldafb, &ipiv_ref[0],
&B[0], ldb, &X_ref[0], ldx, &ferr_ref[0], &berr_ref[0] );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_gbrfs returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
//params.ref_gflops() = gflop / time;
}
}
// -----------------------------------------------------------------------------
void test_gbrfs( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_gbrfs_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_gbrfs_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_gbrfs_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_gbrfs_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|