1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_geqrf_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
int64_t m = params.dim.m();
int64_t n = params.dim.n();
int64_t align = params.align();
params.matrix.mark();
real_t eps = std::numeric_limits< real_t >::epsilon();
real_t tol = params.tol() * eps;
// mark non-standard output values
//params.ref_time();
//params.ref_gflops();
params.gflops();
params.ortho();
if (! run)
return;
// ---------- setup
int64_t lda = roundup( blas::max( 1, m ), align );
size_t size_A = (size_t)( lda * n );
size_t size_tau = (size_t)( blas::min( m, n ) );
int64_t minmn = blas::min( m, n );
std::vector< scalar_t > A_tst( size_A );
std::vector< scalar_t > A_ref( size_A );
std::vector< scalar_t > tau_tst( size_tau );
std::vector< scalar_t > tau_ref( size_tau );
lapack::generate_matrix( params.matrix, m, n, &A_tst[0], lda );
A_ref = A_tst;
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
int64_t info_tst = lapack::geqrf( m, n, &A_tst[0], lda, &tau_tst[0] );
time = testsweeper::get_wtime() - time;
if (info_tst != 0) {
fprintf( stderr, "lapack::geqrf returned error %lld\n", llong( info_tst ) );
}
params.time() = time;
double gflop = lapack::Gflop< scalar_t >::geqrf( m, n );
params.gflops() = gflop / time;
if (params.check() == 'y') {
// ---------- check error
// comparing to ref. solution doesn't work
// Following lapack/TESTING/LIN/zqrt01.f but using smaller Q and R
int64_t ldq = m;
std::vector< scalar_t > Q( m * minmn ); // m by k
int64_t ldr = minmn;
std::vector< scalar_t > R( minmn * n ); // k by n
// Copy details of Q
real_t rogue = -10000000000; // -1D+10
lapack::laset( lapack::MatrixType::General, m, minmn, rogue, rogue, &Q[0], ldq );
lapack::lacpy( lapack::MatrixType::Lower, m, minmn, &A_tst[0], lda, &Q[0], ldq );
// Generate the m-by-m matrix Q
int64_t info_ungqr = lapack::ungqr( m, minmn, minmn, &Q[0], ldq, &tau_tst[0] );
if (info_ungqr != 0) {
fprintf( stderr, "lapack::ungqr returned error %lld\n", llong( info_ungqr ) );
}
// Copy R
lapack::laset( lapack::MatrixType::Lower, minmn, n, 0.0, 0.0, &R[0], ldr );
lapack::lacpy( lapack::MatrixType::Upper, minmn, n, &A_tst[0], lda, &R[0], ldr );
// Compute R - Q'*A
blas::gemm( blas::Layout::ColMajor,
blas::Op::ConjTrans, blas::Op::NoTrans, minmn, n, m,
-1.0, &Q[0], ldq, &A_ref[0], lda, 1.0, &R[0], ldr );
// Compute norm( R - Q'*A ) / ( M * norm(A) * EPS )
real_t Anorm = lapack::lange( lapack::Norm::One, m, n, &A_ref[0], lda );
real_t resid1 = lapack::lange( lapack::Norm::One, minmn, n, &R[0], ldr );
real_t error1 = 0;
if (Anorm > 0)
error1 = resid1 / ( n * Anorm );
// Compute I - Q'*Q
lapack::laset( lapack::MatrixType::Upper, minmn, minmn, 0.0, 1.0, &R[0], ldr );
blas::herk( blas::Layout::ColMajor, blas::Uplo::Upper, blas::Op::ConjTrans,
minmn, m, -1.0, &Q[0], ldq, 1.0, &R[0], ldr );
// Compute norm( I - Q'*Q ) / ( M * EPS ) .
real_t resid2 = lapack::lanhe( lapack::Norm::One, lapack::Uplo::Upper, minmn, &R[0], ldr );
real_t error2 = ( resid2 / n );
params.error() = error1;
params.ortho() = error2;
params.okay() = (error1 < tol) && (error2 < tol);
}
if (params.ref() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_geqrf( m, n, &A_ref[0], lda, &tau_ref[0] );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_geqrf returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
params.ref_gflops() = gflop / time;
}
}
// -----------------------------------------------------------------------------
void test_geqrf( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_geqrf_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_geqrf_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_geqrf_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_geqrf_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|