1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/device.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_getrf_device_work( Params& params, bool run )
{
using lapack::device_info_int;
using lapack::device_pivot_int;
using real_t = blas::real_type< scalar_t >;
// get & mark input values
int64_t m = params.dim.m();
int64_t n = params.dim.n();
int64_t device = params.device();
int64_t align = params.align();
int64_t verbose = params.verbose();
params.matrix.mark();
real_t eps = std::numeric_limits< real_t >::epsilon();
real_t tol = params.tol() * eps;
// mark non-standard output values
params.ref_time();
params.ref_gflops();
params.gflops();
if (! run)
return;
if (blas::get_device_count() == 0) {
params.msg() = "skipping: no GPU devices or no GPU support";
return;
}
// ---------- setup
int64_t lda = roundup( blas::max( 1, m ), align );
size_t size_A = (size_t) lda * n;
size_t size_ipiv = (size_t) blas::min( m, n );
std::vector< scalar_t > A_tst( size_A );
std::vector< scalar_t > A_ref( size_A );
std::vector< device_pivot_int > ipiv_tst( size_ipiv );
std::vector< int64_t > ipiv_tst_i64( size_ipiv );
std::vector< lapack_int > ipiv_ref( size_ipiv );
lapack::generate_matrix( params.matrix, m, n, &A_tst[0], lda );
A_ref = A_tst;
// Allocate and copy to GPU.
lapack::Queue queue( device );
scalar_t* dA_tst = blas::device_malloc< scalar_t >( size_A, queue );
device_pivot_int* d_ipiv = blas::device_malloc< device_pivot_int >( size_ipiv, queue );
device_info_int* d_info = blas::device_malloc< device_info_int >( 1, queue );
blas::device_copy_matrix( m, n, A_tst.data(), lda, dA_tst, lda, queue );
if (verbose >= 1) {
printf( "\n"
"A m=%5lld, n=%5lld, lda=%5lld\n",
llong( m ), llong( n ), llong( lda ) );
}
if (verbose >= 2) {
printf( "A = " ); print_matrix( m, n, &A_tst[0], lda );
}
// Allocate workspace
size_t d_size, h_size;
lapack::getrf_work_size_bytes( m, n, dA_tst, lda, &d_size, &h_size, queue );
char* d_work = blas::device_malloc< char >( d_size, queue );
std::vector<char> h_work_vector( h_size );
char* h_work = h_work_vector.data();
// test error exits
if (params.error_exit() == 'y') {
assert_throw( lapack::getrf( -1, n, dA_tst, lda, d_ipiv, d_work, d_size, h_work, h_size, d_info, queue ), lapack::Error );
assert_throw( lapack::getrf( m, -1, dA_tst, lda, d_ipiv, d_work, d_size, h_work, h_size, d_info, queue ), lapack::Error );
assert_throw( lapack::getrf( m, n, dA_tst, m-1, d_ipiv, d_work, d_size, h_work, h_size, d_info, queue ), lapack::Error );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
queue.sync();
double time = testsweeper::get_wtime();
lapack::getrf( m, n, dA_tst, lda, d_ipiv,
d_work, d_size, h_work, h_size, d_info, queue );
queue.sync();
time = testsweeper::get_wtime() - time;
params.time() = time;
double gflop = lapack::Gflop< scalar_t >::getrf( m, n );
params.gflops() = gflop / time;
// Copy result back to CPU.
device_info_int info_tst;
blas::device_copy_matrix( m, n, dA_tst, lda, A_tst.data(), lda, queue );
blas::device_memcpy( &info_tst, d_info, 1, queue );
blas::device_memcpy( &ipiv_tst[0], d_ipiv, size_ipiv, queue );
queue.sync();
if (info_tst != 0) {
fprintf( stderr, "lapack::getrf returned error %lld\n", llong( info_tst ) );
}
// Cleanup GPU memory.
blas::device_free( dA_tst, queue );
blas::device_free( d_ipiv, queue );
blas::device_free( d_info, queue );
blas::device_free( d_work, queue );
if (verbose >= 2) {
printf( "A_factor = " ); print_matrix( m, n, &A_tst[0], lda );
printf( "ipiv = [" );
for (size_t i = 0; i < size_ipiv; ++i) {
printf( " %3lld", llong( ipiv_tst[ i ] ) );
}
printf( "];\n" );
}
if (params.check() == 'y' && m == n) {
// ---------- check error
// Relative backwards error = ||b - Ax|| / (n * ||A|| * ||x||).
// For m != n, could check PA - LU.
int64_t nrhs = 1;
int64_t ldb = roundup( blas::max( 1, n ), align );
size_t size_B = (size_t) ldb * nrhs;
std::vector< scalar_t > B_tst( size_B );
std::vector< scalar_t > B_ref( size_B );
int64_t idist = 1;
int64_t iseed[4] = { 0, 1, 2, 3 };
lapack::larnv( idist, iseed, B_tst.size(), &B_tst[0] );
B_ref = B_tst;
std::copy( ipiv_tst.begin(), ipiv_tst.end(), ipiv_tst_i64.begin() );
info_tst = lapack::getrs(
lapack::Op::NoTrans, n, nrhs, &A_tst[0], lda, &ipiv_tst_i64[0], &B_tst[0], ldb );
if (info_tst != 0) {
fprintf( stderr, "lapack::getrs returned error %lld\n", llong( info_tst ) );
}
blas::gemm( blas::Layout::ColMajor, blas::Op::NoTrans, blas::Op::NoTrans,
n, nrhs, n,
-1.0, &A_ref[0], lda,
&B_tst[0], ldb,
1.0, &B_ref[0], ldb );
if (verbose >= 2) {
printf( "R = " ); print_matrix( n, nrhs, &B_ref[0], ldb );
}
real_t error = lapack::lange( lapack::Norm::One, n, nrhs, &B_ref[0], ldb );
real_t Xnorm = lapack::lange( lapack::Norm::One, n, nrhs, &B_tst[0], ldb );
real_t Anorm = lapack::lange( lapack::Norm::One, n, n, &A_ref[0], lda );
error /= (n * Anorm * Xnorm);
params.error() = error;
params.okay() = (error < tol);
}
if (params.ref() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_getrf( m, n, &A_ref[0], lda, &ipiv_ref[0] );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_getrf returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
params.ref_gflops() = gflop / time;
if (verbose >= 2) {
printf( "Aref_factor = " ); print_matrix( m, n, &A_ref[0], lda );
}
}
}
// -----------------------------------------------------------------------------
void test_getrf_device( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_getrf_device_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_getrf_device_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_getrf_device_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_getrf_device_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|