File: test_ggev.cc

package info (click to toggle)
lapackpp 2024.10.26-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,500 kB
  • sloc: cpp: 80,181; ansic: 27,660; python: 4,838; xml: 182; perl: 99; makefile: 53; sh: 23
file content (136 lines) | stat: -rw-r--r-- 4,969 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.

#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"

#include <vector>
#include <iostream>

// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_ggev_work( Params& params, bool run )
{
    using real_t = blas::real_type< scalar_t >;

    // get & mark input values
    lapack::Job jobvl = params.jobvl();
    lapack::Job jobvr = params.jobvr();
    int64_t n = params.dim.n();
    int64_t align = params.align();
    params.matrix.mark();
    params.matrixB.mark();

    // mark non-standard output values
    params.ref_time();
    // params.ref_gflops();
    // params.gflops();

    if (! run)
        return;

    // ---------- setup
    int64_t lda = roundup( blas::max( 1, n ), align );
    int64_t ldb = roundup( blas::max( 1, n ), align );
    int64_t ldvl = ( jobvl == lapack::Job::Vec ? roundup( blas::max(1, n), align ) : 1 );
    int64_t ldvr  = ( jobvr == lapack::Job::Vec ? roundup( blas::max(1, n), align ) : 1 );
    size_t size_A = (size_t)( lda * n );
    size_t size_B = (size_t)( ldb * n );
    size_t size_alpha = (size_t)( n );
    size_t size_beta = (size_t)( n );
    size_t size_VL = (size_t)( ldvl * n );
    size_t size_VR = (size_t)( ldvr * n );

    std::vector< scalar_t > A_tst( size_A );
    std::vector< scalar_t > A_ref( size_A );
    std::vector< scalar_t > B_tst( size_B );
    std::vector< scalar_t > B_ref( size_B );
    std::vector< std::complex<real_t> > alpha_tst( size_alpha );
    std::vector< std::complex<real_t> > alpha_ref( size_alpha );
    std::vector< scalar_t > beta_tst( size_beta );
    std::vector< scalar_t > beta_ref( size_beta );
    std::vector< scalar_t > VL_tst( size_VL );
    std::vector< scalar_t > VL_ref( size_VL );
    std::vector< scalar_t > VR_tst( size_VR );
    std::vector< scalar_t > VR_ref( size_VR );

    lapack::generate_matrix( params.matrix,  n, n, &A_tst[0], lda );
    lapack::generate_matrix( params.matrixB, n, n, &B_tst[0], ldb );
    A_ref = A_tst;
    B_ref = B_tst;

    std::copy( alpha_tst.begin(), alpha_tst.end(), alpha_ref.begin() );

    // ---------- run test
    testsweeper::flush_cache( params.cache() );
    double time = testsweeper::get_wtime();
    int64_t info_tst = lapack::ggev( jobvl, jobvr, n, &A_tst[0], lda, &B_tst[0], ldb, &alpha_tst[0], &beta_tst[0], &VL_tst[0], ldvl, &VR_tst[0], ldvr );
    time = testsweeper::get_wtime() - time;
    if (info_tst != 0) {
        fprintf( stderr, "lapack::ggev returned error %lld\n", llong( info_tst ) );
    }

    params.time() = time;
    // double gflop = lapack::Gflop< scalar_t >::ggev( jobvl, jobvr, n );
    // params.gflops() = gflop / time;

    if (params.ref() == 'y' || params.check() == 'y') {
        // ---------- run reference
        testsweeper::flush_cache( params.cache() );
        time = testsweeper::get_wtime();
        int64_t info_ref = LAPACKE_ggev( to_char( jobvl ), to_char( jobvr ), n, &A_ref[0], lda, &B_ref[0], ldb, &alpha_ref[0], &beta_ref[0], &VL_ref[0], ldvl, &VR_ref[0], ldvr );
        time = testsweeper::get_wtime() - time;
        if (info_ref != 0) {
            fprintf( stderr, "LAPACKE_ggev returned error %lld\n", llong( info_ref ) );
        }

        params.ref_time() = time;
        // params.ref_gflops() = gflop / time;

        // ---------- check error compared to reference
        real_t error = 0;
        if (info_tst != info_ref) {
            error = 1;
        }
        error += abs_error( A_tst, A_ref );
        error += abs_error( B_tst, B_ref );
        error += abs_error( alpha_tst, alpha_ref );
        error += abs_error( beta_tst, beta_ref );
        error += abs_error( VL_tst, VL_ref );
        error += abs_error( VR_tst, VR_ref );
        params.error() = error;
        params.okay() = (error == 0);  // expect lapackpp == lapacke
    }
}

// -----------------------------------------------------------------------------
void test_ggev( Params& params, bool run )
{
    switch (params.datatype()) {
        case testsweeper::DataType::Single:
            test_ggev_work< float >( params, run );
            break;

        case testsweeper::DataType::Double:
            test_ggev_work< double >( params, run );
            break;

        case testsweeper::DataType::SingleComplex:
            test_ggev_work< std::complex<float> >( params, run );
            break;

        case testsweeper::DataType::DoubleComplex:
            test_ggev_work< std::complex<double> >( params, run );
            break;

        default:
            throw std::runtime_error( "unknown datatype" );
            break;
    }
}