1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/device.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "check_heev.hh"
#include "lapacke_wrappers.hh"
#include <vector>
template< typename scalar_t >
void test_heevd_device_work( Params& params, bool run )
{
using lapack::device_info_int;
using real_t = blas::real_type< scalar_t >;
using lapack::Job;
// Constants
const real_t eps = std::numeric_limits< real_t >::epsilon();
// get & mark input values
lapack::Job jobz = params.jobz();
lapack::Uplo uplo = params.uplo();
int64_t n = params.dim.n();
int64_t device = params.device();
int64_t align = params.align();
int64_t verbose = params.verbose();
real_t tol = params.tol() * eps;
params.matrix.mark();
// mark non-standard output values
params.ref_time();
// params.ref_gflops();
// params.gflops();
params.ortho();
params.error2();
params.error2.name( "Lambda" );
if (! run)
return;
if (blas::get_device_count() == 0) {
params.msg() = "skipping: no GPU devices or no GPU support";
return;
}
// ---------- setup
int64_t lda = roundup( blas::max( 1, n ), align );
int64_t ldz = lda; // vectors overwrite matrix A
size_t size_A = (size_t) lda * n;
size_t size_Z = size_A;
size_t size_W = (size_t) n;
std::vector< scalar_t > A( size_A );
std::vector< scalar_t > Z( size_Z ); // eigenvectors
std::vector< real_t > Lambda_tst( n );
std::vector< real_t > Lambda_ref( n );
lapack::generate_matrix( params.matrix, n, n, &A[0], lda );
Z = A;
// Allocate and copy to GPU
lapack::Queue queue( device );
scalar_t* dA_tst = blas::device_malloc< scalar_t >( size_A, queue );
real_t* dW_tst = blas::device_malloc< real_t > ( size_W, queue );
device_info_int* d_info = blas::device_malloc< device_info_int >( 1, queue );
blas::device_copy_matrix( n, n, A.data(), lda, dA_tst, lda, queue );
// Allocate workspace
size_t d_size, h_size;
lapack::heevd_work_size_bytes( jobz, uplo, n, dA_tst, lda, dW_tst,
&d_size, &h_size, queue );
char* d_work = blas::device_malloc< char >( d_size, queue );
std::vector<char> h_work_vector( h_size );
char* h_work = h_work_vector.data();
if (verbose >= 1) {
printf( "\n" );
printf( "A n=%5lld, lda=%5lld\n", llong( n ), llong( lda ) );
}
if (verbose >= 2) {
printf( "A = " ); print_matrix( n, n, &A[0], lda );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
queue.sync();
double time = testsweeper::get_wtime();
lapack::heevd( jobz, uplo, n, dA_tst, lda, dW_tst, d_work, d_size,
h_work, h_size, d_info, queue );
queue.sync();
time = testsweeper::get_wtime() - time;
params.time() = time;
// double gflop = lapack::Gflop< scalar_t >::heev( jobz, n );
// params.gflops() = gflop / time;
// Copy result back to CPU.
device_info_int info_tst;
blas::device_copy_matrix( n, n, dA_tst, lda, Z.data(), ldz, queue );
blas::device_copy_vector( n, dW_tst, 1, Lambda_tst.data(), 1, queue );
blas::device_memcpy( &info_tst, d_info, 1, queue );
queue.sync();
if (info_tst != 0) {
fprintf( stderr, "lapack::heev returned error %lld\n", llong( info_tst ) );
}
// Cleanup GPU memory
blas::device_free( dA_tst, queue );
blas::device_free( dW_tst, queue );
blas::device_free( d_work, queue );
blas::device_free( d_info, queue );
if (verbose >= 2) {
printf( "Z = " ); print_matrix( n, n, &Z[0], ldz );
printf( "Lambda = " ); print_vector( n, &Lambda_tst[0], 1 );
}
if (params.check() == 'y') {
// ---------- check numerical error
// result[ 0 ] = || A - Z Lambda Z^H || / (n ||A||), if jobz != NoVec.
// result[ 1 ] = || I - Z^H Z || / n, if jobz != NoVec.
// result[ 2 ] = 0 if Lambda is in non-decreasing order, else > 0.
real_t result[ 3 ] = { (real_t) testsweeper::no_data_flag,
(real_t) testsweeper::no_data_flag,
(real_t) testsweeper::no_data_flag };
check_heev( jobz, uplo, n, &A[0], lda,
n, &Lambda_tst[0], &Z[0], ldz, result );
params.error() = result[ 0 ];
params.ortho() = result[ 1 ];
params.error2() = result[ 2 ];
params.okay() = (jobz == Job::NoVec || result[ 0 ] < tol)
&& (jobz == Job::NoVec || result[ 1 ] < tol)
&& result[ 2 ] < tol;
}
if (params.ref() == 'y' || params.check() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_heev(
to_char( jobz ), to_char( uplo ), n,
&A[0], lda, &Lambda_ref[0] );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_heev returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
// params.ref_gflops() = gflop / time;
// ---------- check error compared to reference
real_t error = rel_error( Lambda_tst, Lambda_ref );
if (info_tst != info_ref) {
error = 1;
}
params.error2() = error;
params.okay() = params.okay() && (error < tol);
}
}
// -----------------------------------------------------------------------------
void test_heevd_device( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_heevd_device_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_heevd_device_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_heevd_device_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_heevd_device_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|