1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_lacpy_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::MatrixType matrixtype = params.matrixtype();
int64_t m = params.dim.m();
int64_t n = params.dim.n();
int64_t align = params.align();
params.matrix.mark();
// mark non-standard output values
params.ref_time();
//params.ref_gflops();
//params.gflops();
if (! run)
return;
// ---------- setup
int64_t lda = roundup( blas::max( 1, m ), align );
int64_t ldb = roundup( blas::max( 1, m ), align );
size_t size_A = (size_t) lda * n;
size_t size_B = (size_t) ldb * n;
std::vector< scalar_t > A( size_A );
std::vector< scalar_t > B_tst( size_B );
std::vector< scalar_t > B_ref( size_B );
lapack::generate_matrix( params.matrix, m, n, &A[0], lda );
lapack::generate_matrix( params.matrix, m, n, &B_tst[0], ldb );
B_ref = B_tst;
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
lapack::lacpy( matrixtype, m, n, &A[0], lda, &B_tst[0], ldb );
time = testsweeper::get_wtime() - time;
params.time() = time;
//double gflop = lapack::Gflop< scalar_t >::lacpy( m, n );
//params.gflops() = gflop / time;
if (params.ref() == 'y' || params.check() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_lacpy( to_char( matrixtype ), m, n, &A[0], lda, &B_ref[0], ldb );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_lacpy returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
//params.ref_gflops() = gflop / time;
// ---------- check error compared to reference
real_t error = 0;
error += abs_error( B_tst, B_ref );
params.error() = error;
params.okay() = (error == 0); // expect lapackpp == lapacke
}
}
// -----------------------------------------------------------------------------
void test_lacpy( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_lacpy_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_lacpy_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_lacpy_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_lacpy_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|