1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_lantr_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::Norm norm = params.norm();
lapack::Uplo uplo = params.uplo();
lapack::Diag diag = params.diag();
int64_t m = params.dim.m();
int64_t n = params.dim.n();
int64_t align = params.align();
int64_t verbose = params.verbose();
params.matrix.mark();
// mark non-standard output values
params.ref_time();
//params.ref_gflops();
//params.gflops();
params.msg();
if (! run)
return;
// Any m, n actually works, despite the LAPACK documentation.
// ---------- setup
int64_t lda = roundup( blas::max( m, 1 ), align );
size_t size_A = (size_t) lda * n;
std::vector< scalar_t > A( size_A );
lapack::generate_matrix( params.matrix, m, n, &A[0], lda );
if (verbose >= 1) {
printf( "\n"
"A m=%5lld, n=%5lld, lda=%5lld\n",
llong( m ), llong( n ), llong( lda ) );
}
if (verbose >= 2) {
printf( "A = " ); print_matrix( m, n, &A[0], lda );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
real_t norm_tst = lapack::lantr( norm, uplo, diag, m, n, &A[0], lda );
time = testsweeper::get_wtime() - time;
params.time() = time;
//double gflop = lapack::Gflop< scalar_t >::lantr( norm, diag, m, n );
//params.gflops() = gflop / time;
if (verbose >= 1) {
printf( "norm_tst = %.8e\n", norm_tst );
}
if (params.ref() == 'y' || params.check() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
real_t norm_ref = LAPACKE_lantr( to_char( norm ), to_char( uplo ), to_char( diag ), m, n, &A[0], lda );
time = testsweeper::get_wtime() - time;
params.ref_time() = time;
//params.ref_gflops() = gflop / time;
if (verbose >= 1) {
printf( "norm_ref = %.8e\n", norm_ref );
}
// ---------- check error compared to reference
real_t tol = 3 * std::numeric_limits< real_t >::epsilon();
real_t normalize = 1;
if (norm == lapack::Norm::Max && ! blas::is_complex< scalar_t >::value) {
// max-norm depends on only one element, so in real there should be
// zero error, but in complex there's error in abs().
tol = 0;
}
else if (norm == lapack::Norm::One)
normalize = sqrt( real_t(m) );
else if (norm == lapack::Norm::Inf)
normalize = sqrt( real_t(n) );
else if (norm == lapack::Norm::Fro)
normalize = sqrt( real_t(m)*n );
real_t error = std::abs( norm_tst - norm_ref ) / normalize;
if (norm_ref != 0)
error /= norm_ref;
params.error() = error;
params.okay() = (error <= tol);
}
}
// -----------------------------------------------------------------------------
void test_lantr( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_lantr_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_lantr_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_lantr_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_lantr_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|