1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_larft_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::Direction direction = params.direction();
lapack::StoreV storev = params.storev();
int64_t n = params.dim.n();
int64_t k = params.dim.k();
int64_t align = params.align();
int64_t verbose = params.verbose();
// mark non-standard output values
params.ref_time();
//params.ref_gflops();
//params.gflops();
if (! run)
return;
// skip invalid sizes
if (! (n >= k)) {
params.msg() = "skipping: requires n >= k (not documented)";
return;
}
// ---------- setup
int64_t Vm, Vn;
if (storev == lapack::StoreV::Columnwise) {
Vm = n;
Vn = k;
}
else {
Vm = k;
Vn = n;
}
int64_t ldv = roundup( blas::max( 1, Vm ), align );
int64_t ldt = roundup( blas::max( 1, k ), align );
size_t size_V = (size_t) ldv * Vn;
size_t size_tau = (size_t) (k);
size_t size_T = (size_t) ldt * k;
std::vector< scalar_t > V( size_V );
std::vector< scalar_t > tau( size_tau );
std::vector< scalar_t > T_tst( size_T );
std::vector< scalar_t > T_ref( size_T );
int64_t idist = 1;
int64_t iseed[4] = { 0, 1, 2, 3 };
lapack::larnv( idist, iseed, V.size(), &V[0] );
lapack::generate_matrix( params.matrix, k, k, &T_tst[0], ldt );
T_ref = T_tst;
// generate Householder vectors; initializes tau
// From larft docs, with n = 5 and k = 3:
// direction = 'f' and storev = 'c': direction = 'f' and storev = 'r':
//
// V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
// ( v1 1 ) ( 1 v2 v2 v2 )
// ( v1 v2 1 ) ( 1 v3 v3 )
// ( v1 v2 v3 )
// ( v1 v2 v3 )
//
// direction = 'b' and storev = 'c': direction = 'b' and storev = 'r':
//
// V = ( v1 v2 v3 ) V = ( v1 v1 1 )
// ( v1 v2 v3 ) ( v2 v2 v2 1 )
// ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
// ( 1 v3 )
// ( 1 )
for (int i = 0; i < k; ++i) {
if (storev == lapack::StoreV::Columnwise) {
if (direction == lapack::Direction::Forward) {
lapack::larfg( n-i, &V[i + i*ldv], &V[i+1 + i*ldv], 1, &tau[i] );
}
else {
lapack::larfg( n-k+i+1, &V[(n - k + i) + i*ldv], &V[0 + i*ldv], 1, &tau[i] );
}
}
else {
if (direction == lapack::Direction::Forward) {
lapack::larfg( n-i, &V[i + i*ldv], &V[i + (i+1)*ldv], ldv, &tau[i] );
}
else {
lapack::larfg( n-k+i+1, &V[i + (n - k + i)*ldv], &V[i + 0*ldv], ldv, &tau[i] );
}
}
}
if (verbose >= 2) {
printf( "V = " ); print_matrix( Vm, Vn, &V[0], ldv );
printf( "tau = " ); print_vector( k, &tau[0], 1 );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
lapack::larft( direction, storev, n, k, &V[0], ldv, &tau[0], &T_tst[0], ldt );
time = testsweeper::get_wtime() - time;
params.time() = time;
//double gflop = lapack::Gflop< scalar_t >::larft( direction, storev, n, k );
//params.gflops() = gflop / time;
if (verbose >= 3) {
printf( "T = " ); print_matrix( k, k, &T_tst[0], ldt );
}
if (params.ref() == 'y' || params.check() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_larft( to_char( direction ), to_char( storev ), n, k, &V[0], ldv, &tau[0], &T_ref[0], ldt );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_larft returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
//params.ref_gflops() = gflop / time;
if (verbose >= 3) {
printf( "Tref = " ); print_matrix( k, k, &T_ref[0], ldt );
}
// ---------- check error compared to reference
real_t error = 0;
error += abs_error( T_tst, T_ref );
params.error() = error;
real_t tol = 100;
real_t eps = std::numeric_limits< real_t >::epsilon();
params.okay() = (error < tol*eps); // todo: what's a good error check?
}
}
// -----------------------------------------------------------------------------
void test_larft( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_larft_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_larft_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_larft_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_larft_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|