1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include "cblas_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_pbrfs_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::Uplo uplo = params.uplo();
int64_t n = params.dim.n();
int64_t kd = params.kd();
int64_t nrhs = params.nrhs();
int64_t align = params.align();
int64_t verbose = params.verbose();
real_t eps = std::numeric_limits< real_t >::epsilon();
real_t tol = params.tol() * eps;
// mark non-standard output values
params.ref_time();
//params.ref_gflops();
//params.gflops();
if (! run)
return;
// ---------- setup
int64_t ldab = roundup( kd+1, align );
int64_t ldafb = ldab;
int64_t ldb = roundup( blas::max( 1, n ), align );
int64_t ldx = ldb;
size_t size_AB = (size_t) ldab * n;
size_t size_AFB = size_AB;
size_t size_B = (size_t) ldb * nrhs;
size_t size_X = size_B;
size_t size_ferr = (size_t) (nrhs);
size_t size_berr = (size_t) (nrhs);
std::vector< scalar_t > AB( size_AB );
std::vector< scalar_t > AFB( size_AFB );
std::vector< scalar_t > B( size_B );
std::vector< scalar_t > X_tst( size_X );
std::vector< scalar_t > X_ref( size_X );
std::vector< real_t > ferr_tst( size_ferr );
std::vector< real_t > ferr_ref( size_ferr );
std::vector< real_t > berr_tst( size_berr );
std::vector< real_t > berr_ref( size_berr );
int64_t idist = 1;
int64_t iseed[4] = { 0, 1, 2, 3 };
lapack::larnv( idist, iseed, AB.size(), &AB[0] );
int64_t iseed_B[4];
std::copy( iseed, iseed+4, iseed_B );
lapack::larnv( idist, iseed, B.size(), &B[0] );
X_tst = B;
// diagonally dominant -> positive definite
if (uplo == lapack::Uplo::Upper) {
for (int64_t j = 0; j < n; ++j) {
AB[ kd + j*ldab ] += n;
}
}
else { // lower
for (int64_t j = 0; j < n; ++j) {
AB[ j*ldab ] += n;
}
}
AFB = AB;
// Factor
int64_t info = lapack::pbtrf( uplo, n, kd, &AFB[0], ldafb );
if (info != 0) {
fprintf( stderr, "lapack::pbtrf returned error %lld\n", llong( info ) );
}
// Solve in X_tst
info = lapack::pbtrs ( uplo, n, kd, nrhs, &AFB[0], ldab, &X_tst[0], ldx );
if (info != 0) {
fprintf( stderr, "lapack::pbtrs returned error %lld\n", llong( info ) );
}
X_ref = X_tst;
if (verbose >= 2) {
printf( "A_factor = " ); print_matrix( kd+1, n, &AFB[0], ldafb );
printf( "X = " ); print_matrix( n, nrhs, &X_tst[0], ldx );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
// Refine solution in X_tst, using original AB and B, factored AFB.
int64_t info_tst = lapack::pbrfs(
uplo, n, kd, nrhs, &AB[0], ldab, &AFB[0], ldafb,
&B[0], ldb, &X_tst[0], ldx, &ferr_tst[0], &berr_tst[0] );
time = testsweeper::get_wtime() - time;
if (info_tst != 0) {
fprintf( stderr, "lapack::pbrfs returned error %lld\n", llong( info_tst ) );
}
params.time() = time;
//double gflop = lapack::Gflop< scalar_t >::pbrfs( n, kd, nrhs );
//params.gflops() = gflop / time;
if (verbose >= 2) {
printf( "Xrfs = " ); print_matrix( n, nrhs, &X_tst[0], ldx );
printf( "ferr = " ); print_vector( n, &ferr_tst[0], 1 );
printf( "berr = " ); print_vector( n, &berr_tst[0], 1 );
}
if (params.check() == 'y') {
// ---------- check error
// Relative backwards error = ||b - Ax|| / (n * ||A|| * ||x||).
// No hbmm, so loop over RHS.
for (int64_t j = 0; j < nrhs; ++j) {
// B_ref -= A * B_tst
cblas_hbmv( CblasColMajor, cblas_uplo_const(uplo), n, kd,
-1.0, &AB[0], ldab,
&X_tst[ j*ldx ], 1,
1.0, &B[ j*ldb ], 1 );
}
if (verbose >= 2) {
printf( "R = " ); print_matrix( n, nrhs, &B[0], ldb );
}
real_t error = lapack::lange( lapack::Norm::One, n, nrhs, &B[0], ldb );
real_t Xnorm = lapack::lange( lapack::Norm::One, n, nrhs, &X_tst[0], ldx );
real_t Anorm = lapack::lanhb( lapack::Norm::One, uplo, n, kd, &AB[0], ldab );
error /= (n * Anorm * Xnorm);
params.error() = error;
params.okay() = (error < tol);
// Reset B for ref using saved seed.
lapack::larnv( idist, iseed_B, B.size(), &B[0] );
}
if (params.ref() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_pbrfs(
to_char( uplo ), n, kd, nrhs, &AB[0], ldab, &AFB[0], ldafb,
&B[0], ldb, &X_ref[0], ldx, &ferr_ref[0], &berr_ref[0] );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_pbrfs returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
//params.ref_gflops() = gflop / time;
}
}
// -----------------------------------------------------------------------------
void test_pbrfs( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_pbrfs_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_pbrfs_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_pbrfs_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_pbrfs_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|