1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_potri_work( Params& params, bool run )
{
using blas::conj;
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::Uplo uplo = params.uplo();
int64_t n = params.dim.n();
int64_t align = params.align();
int64_t verbose = params.verbose();
params.matrix.mark();
real_t eps = std::numeric_limits< real_t >::epsilon();
real_t tol = params.tol() * eps;
// mark non-standard output values
params.ref_time();
params.ref_gflops();
params.gflops();
if (! run) {
params.matrix.kind.set_default( "rand_dominant" );
return;
}
// ---------- setup
int64_t lda = roundup( blas::max( 1, n ), align );
size_t size_A = (size_t) lda * n;
std::vector< scalar_t > A_tst( size_A );
std::vector< scalar_t > A_ref( size_A );
lapack::generate_matrix( params.matrix, n, n, &A_tst[0], lda );
A_ref = A_tst;
if (verbose >= 1) {
printf( "\n"
"A n=%5lld, lda=%5lld\n",
llong( n ), llong( lda ) );
}
if (verbose >= 2) {
printf( "A = " ); print_matrix( n, n, &A_tst[0], lda );
}
// factor A into LL^T
int64_t info = lapack::potrf( uplo, n, &A_tst[0], lda );
if (info != 0) {
fprintf( stderr, "lapack::potrf returned error %lld\n", llong( info ) );
}
// test error exits
if (params.error_exit() == 'y') {
using lapack::Uplo;
assert_throw( lapack::potri( Uplo(0), n, &A_tst[0], lda ), lapack::Error );
assert_throw( lapack::potri( uplo, -1, &A_tst[0], lda ), lapack::Error );
assert_throw( lapack::potri( uplo, n, &A_tst[0], n-1 ), lapack::Error );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
int64_t info_tst = lapack::potri( uplo, n, &A_tst[0], lda );
time = testsweeper::get_wtime() - time;
if (info_tst != 0) {
fprintf( stderr, "lapack::potri returned error %lld\n", llong( info_tst ) );
}
params.time() = time;
double gflop = lapack::Gflop< scalar_t >::potri( n );
params.gflops() = gflop / time;
if (verbose >= 2) {
printf( "A2 = " ); print_matrix( n, n, &A_tst[0], lda );
}
if (params.check() == 'y') {
// ---------- check error
// comparing to ref. solution doesn't work due to roundoff errors
// symmetrize A^{-1}, in order to use hemm
if (uplo == blas::Uplo::Lower) {
for (int64_t j = 0; j < n; ++j)
for (int64_t i = 0; i < j; ++i)
A_tst[ i + j*lda ] = conj( A_tst[ j + i*lda ] );
}
else {
for (int64_t j = 0; j < n; ++j)
for (int64_t i = 0; i < j; ++i)
A_tst[ j + i*lda ] = conj( A_tst[ i + j*lda ] );
}
if (verbose >= 2) {
printf( "A2b = " ); print_matrix( n, n, &A_tst[0], lda );
}
// R = I
std::vector< scalar_t > R( size_A );
// todo: laset; needs uplo=general
for (int64_t j = 0; j < n; ++j) {
for (int64_t i = 0; i < n; ++i) {
R[ i + j*lda ] = 0;
}
R[ j + j*lda ] = 1;
}
// R = I - A A^{-1}, A is Hermitian, A^{-1} is treated as general
blas::hemm( blas::Layout::ColMajor, blas::Side::Left, uplo, n, n,
-1.0, &A_ref[0], lda,
&A_tst[0], lda,
1.0, &R[0], lda );
if (verbose >= 2) {
printf( "R = " ); print_matrix( n, n, &R[0], lda );
}
// error = ||I - A A^{-1}|| / (n ||A|| ||A^{-1}||)
real_t Rnorm = lapack::lange( lapack::Norm::Fro, n, n, &R[0], lda );
real_t Anorm = lapack::lanhe( lapack::Norm::Fro, uplo, n, &A_ref[0], lda );
real_t Ainv_norm = lapack::lanhe( lapack::Norm::Fro, uplo, n, &A_tst[0], lda );
real_t error = Rnorm / (n * Anorm * Ainv_norm);
params.error() = error;
params.okay() = (error < tol);
}
if (params.ref() == 'y') {
// factor A into LL^T
info = LAPACKE_potrf( to_char( uplo ), n, &A_ref[0], lda );
if (info != 0) {
fprintf( stderr, "LAPACKE_potrf returned error %lld\n", llong( info ) );
}
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_potri( to_char( uplo ), n, &A_ref[0], lda );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_potri returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
params.ref_gflops() = gflop / time;
if (verbose >= 2) {
printf( "A2ref = " ); print_matrix( n, n, &A_ref[0], lda );
}
}
}
// -----------------------------------------------------------------------------
void test_potri( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_potri_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_potri_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_potri_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_potri_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|