1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
#include <ctgmath>
// -----------------------------------------------------------------------------
// Generate the Kahan matrix and its eigenvalues on three vectors.
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_sturm_Kahan(int64_t n, std::vector<scalar_t>& diag,
std::vector<scalar_t>& offd, std::vector<scalar_t>& eigv,
scalar_t* one_norm)
{
using real_t = blas::real_type< scalar_t >;
real_t x;
int64_t i,k;
x = 1.e-5;
for (k = 1; k <= (n/2); ++k) { // generate the eigenvalues.
real_t ev;
ev = (M_PI*k+0.)/(n+1.0); // angle in radians.
ev = cos(ev); // cos(angle)
ev *= 4.*ev; // 4*cos^2(angle)
ev += x*x; // x^2 + 4*cos^2(angle)
ev = sqrt(ev); // (x^2 + 4*cos^2(angle))^(0.5)
eigv[k-1] = -ev; // Store the eigvalues in ascending order.
eigv[n+1-k-1] = ev;
}
for (i = 0; i < n-1; ++i) { // generate the diagonal and off-diagonal.
offd[i] = 1.0;
// (i & 1) = 1 if k is odd, 0 if k is even.
diag[i] = (i & 1)?-x:x; // use -x if k is odd, +x if k is even.
}
// Final entry; i=(n-1). We don't set offd[n-1].
diag[i] = (i & 1)?-x:x; // use -x if k is odd, +x if k is even.
// We compute the one norm of the matrix; the maximum abs column sum.
// This routine is generic for any ST matrix.
real_t norm = std::abs(diag[0])+std::abs(offd[0]);
real_t test;
for (i = 1; i < n-1; ++i) {
test = std::abs(diag[i])+std::abs(offd[i-1])+std::abs(offd[i+1]);
if (test > norm) {
norm = test;
}
}
test = std::abs(diag[n-1])+std::abs(offd[n-2]);
if (test > norm) {
norm = test;
}
one_norm[0] = norm;
}
template< typename scalar_t >
void test_sturm_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
int64_t n = params.dim.n();
int64_t verbose = params.verbose();
if (! run) {
return;
}
// ---------- setup
std::vector< scalar_t > diag( (size_t) n );
std::vector< scalar_t > eigv( (size_t) n );
std::vector< scalar_t > offd( (size_t) (n-1) );
real_t real_max=std::numeric_limits< real_t >::max();
real_t one_norm, my_ulp;
test_sturm_Kahan(n, diag, offd, eigv, &one_norm);
my_ulp = (real_t(2.))*(nextafter(one_norm, real_max) - one_norm);
// 2*my_ulp seems to be the accuracy we can get from the matrix.
if (verbose >= 2) {
printf("\n"
"One-norm = %.16e, 2*ulp=%.16e\n",
one_norm, my_ulp);
}
// zero-rel, so if n=100, idx=50, eigv[50] is actually the 51st eigenvalue.
int64_t eig_mid_idx = (n / 2);
real_t eig_min, eig_min_before, eig_min_after;
eig_min=eigv[0];
eig_min_before = eig_min-my_ulp;
eig_min_after = eig_min+my_ulp;
real_t eig_mid, eig_mid_before, eig_mid_after;
eig_mid=eigv[(eig_mid_idx)];
eig_mid_before = eig_mid-my_ulp;
eig_mid_after = eig_mid+my_ulp;
real_t eig_max, eig_max_before, eig_max_after;
eig_max=eigv[n-1];
eig_max_before = eig_max-my_ulp;
eig_max_after = eig_max+my_ulp;
if (verbose >= 2) {
printf( "\n"
"eig_min=%.16e, eig_minbefore=%.16e, eig_minafter=%.16e\n",
eig_min, eig_min_before, eig_min_after );
printf( "\n"
"eig_mid=%.16e, eig_midbefore=%.16e, eig_midafter=%.16e\n",
eig_mid, eig_mid_before, eig_mid_after );
printf( "\n"
"eigv[eig_mid_idx-1]=%.16e diff=%.16e\n",
eigv[eig_mid_idx-1], eigv[eig_mid_idx]-eigv[eig_mid_idx-1]);
printf( "\n"
"eig_max=%.16e, eig_maxbefore=%.16e, eig_maxafter=%.16e\n",
eig_max, eig_max_before, eig_max_after );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
int64_t r_min_before, r_min_after;
int64_t r_mid_before, r_mid_after;
int64_t r_max_before, r_max_after;
int64_t error;
error = 0;
r_min_before = lapack::sturm( n, &diag[0], &offd[0], eig_min_before);
r_min_after = lapack::sturm( n, &diag[0], &offd[0], eig_min_after );
if (verbose >= 2) {
printf( "\n"
"r_minbefore=%lld r_minafter=%lld. Expected =0, >=1\n",
llong(r_min_before), llong(r_min_after));
}
if (r_min_before > 0) {
++error;
}
if (r_min_after < 1) {
++error;
}
r_mid_before = lapack::sturm( n, &diag[0], &offd[0], eig_mid_before);
r_mid_after = lapack::sturm( n, &diag[0], &offd[0], eig_mid_after );
if (verbose >= 2) {
printf( "\n"
"r_midbefore=%lld r_midafter=%lld."
" Expected <%lld, >=%lld\n",
llong(r_mid_before), llong(r_mid_after), llong(eig_mid_idx+1),
llong(eig_mid_idx+1));
}
// The number of eigenvalues less than mid should be the middle index itself.
// If n==100, n/2=50, but zero relative, eigv[50] is actually the 51st
// eigenvalue, so we'd expect 50 less than that.
if (r_mid_before > eig_mid_idx) {
++error;
}
if (r_mid_after < (eig_mid_idx+1)) {
++error;
}
r_max_before = lapack::sturm( n, &diag[0], &offd[0], eig_max_before);
r_max_after = lapack::sturm( n, &diag[0], &offd[0], eig_max_after );
if (verbose >= 2) {
printf( "\n"
"r_maxbefore=%lld r_maxafter=%lld."
" Expected <%lld, =%lld\n",
llong(r_max_before), llong(r_max_after), llong(n), llong(n));
}
if (r_max_before > (n-1)) {
++error;
}
if (r_max_after != n ) {
++error;
}
time = testsweeper::get_wtime() - time;
params.ref_time() = time;
params.error() = error;
params.okay() = (error == 0);
}
// -----------------------------------------------------------------------------
void test_sturm( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_sturm_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_sturm_work< double >( params, run );
break;
default:
throw std::runtime_error( "unsupported datatype" );
break;
}
}
|