File: test_sturm.cc

package info (click to toggle)
lapackpp 2024.10.26-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,500 kB
  • sloc: cpp: 80,181; ansic: 27,660; python: 4,838; xml: 182; perl: 99; makefile: 53; sh: 23
file content (218 lines) | stat: -rw-r--r-- 7,026 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.

#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"

#include <vector>
#include <ctgmath>

// -----------------------------------------------------------------------------
// Generate the Kahan matrix and its eigenvalues on three vectors.
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_sturm_Kahan(int64_t n, std::vector<scalar_t>& diag,
                      std::vector<scalar_t>& offd, std::vector<scalar_t>& eigv,
                      scalar_t* one_norm)
{
    using real_t = blas::real_type< scalar_t >;
    real_t x;
    int64_t i,k;
    x = 1.e-5;
    for (k = 1; k <= (n/2); ++k) {  // generate the eigenvalues.
        real_t ev;
        ev = (M_PI*k+0.)/(n+1.0);   // angle in radians.
        ev = cos(ev);               // cos(angle)
        ev *= 4.*ev;                // 4*cos^2(angle)
        ev += x*x;                  // x^2 + 4*cos^2(angle)
        ev = sqrt(ev);              // (x^2 + 4*cos^2(angle))^(0.5)
        eigv[k-1] = -ev;            // Store the eigvalues in ascending order.
        eigv[n+1-k-1] = ev;
    }

    for (i = 0; i < n-1; ++i) {     // generate the diagonal and off-diagonal.
        offd[i] = 1.0;
        // (i & 1) = 1 if k is odd, 0 if k is even.
        diag[i] = (i & 1)?-x:x;     // use -x if k is odd, +x if k is even.
    }

    // Final entry; i=(n-1). We don't set offd[n-1].
    diag[i] = (i & 1)?-x:x;         // use -x if k is odd, +x if k is even.

    // We compute the one norm of the matrix; the maximum abs column sum.
    // This routine is generic for any ST matrix.
    real_t norm = std::abs(diag[0])+std::abs(offd[0]);
    real_t test;
    for (i = 1; i < n-1; ++i) {
        test = std::abs(diag[i])+std::abs(offd[i-1])+std::abs(offd[i+1]);
        if (test > norm) {
            norm = test;
        }
    }

    test = std::abs(diag[n-1])+std::abs(offd[n-2]);
    if (test > norm) {
        norm = test;
    }

    one_norm[0] = norm;
}

template< typename scalar_t >
void test_sturm_work( Params& params, bool run )
{
    using real_t = blas::real_type< scalar_t >;

    // get & mark input values
    int64_t n = params.dim.n();
    int64_t verbose = params.verbose();

    if (! run) {
        return;
    }

    // ---------- setup
    std::vector< scalar_t > diag( (size_t) n );
    std::vector< scalar_t > eigv( (size_t) n );
    std::vector< scalar_t > offd( (size_t) (n-1) );
    real_t real_max=std::numeric_limits< real_t >::max();

    real_t one_norm, my_ulp;
    test_sturm_Kahan(n, diag, offd, eigv, &one_norm);
    my_ulp = (real_t(2.))*(nextafter(one_norm, real_max) - one_norm);

    // 2*my_ulp seems to be the accuracy we can get from the matrix.
    if (verbose >= 2) {
        printf("\n"
               "One-norm = %.16e, 2*ulp=%.16e\n",
               one_norm, my_ulp);
    }

    // zero-rel, so if n=100, idx=50, eigv[50] is actually the 51st eigenvalue.
    int64_t eig_mid_idx = (n / 2);
    real_t eig_min, eig_min_before, eig_min_after;
    eig_min=eigv[0];
    eig_min_before = eig_min-my_ulp;
    eig_min_after  = eig_min+my_ulp;

    real_t eig_mid, eig_mid_before, eig_mid_after;
    eig_mid=eigv[(eig_mid_idx)];
    eig_mid_before = eig_mid-my_ulp;
    eig_mid_after  = eig_mid+my_ulp;

    real_t eig_max, eig_max_before, eig_max_after;
    eig_max=eigv[n-1];
    eig_max_before = eig_max-my_ulp;
    eig_max_after = eig_max+my_ulp;

    if (verbose >= 2) {
        printf( "\n"
                "eig_min=%.16e, eig_minbefore=%.16e, eig_minafter=%.16e\n",
                eig_min, eig_min_before, eig_min_after );
        printf( "\n"
                "eig_mid=%.16e, eig_midbefore=%.16e, eig_midafter=%.16e\n",
                eig_mid, eig_mid_before, eig_mid_after );
        printf( "\n"
                "eigv[eig_mid_idx-1]=%.16e diff=%.16e\n",
                eigv[eig_mid_idx-1], eigv[eig_mid_idx]-eigv[eig_mid_idx-1]);
        printf( "\n"
                "eig_max=%.16e, eig_maxbefore=%.16e, eig_maxafter=%.16e\n",
                eig_max, eig_max_before, eig_max_after );
    }

    // ---------- run test
    testsweeper::flush_cache( params.cache() );
    double time = testsweeper::get_wtime();
    int64_t r_min_before, r_min_after;
    int64_t r_mid_before, r_mid_after;
    int64_t r_max_before, r_max_after;
    int64_t error;
    error = 0;

    r_min_before = lapack::sturm( n, &diag[0], &offd[0], eig_min_before);
    r_min_after  = lapack::sturm( n, &diag[0], &offd[0], eig_min_after );

    if (verbose >= 2) {
        printf( "\n"
                "r_minbefore=%lld r_minafter=%lld. Expected =0, >=1\n",
                llong(r_min_before), llong(r_min_after));
    }

    if (r_min_before > 0) {
        ++error;
    }

    if (r_min_after  < 1) {
        ++error;
    }

    r_mid_before = lapack::sturm( n, &diag[0], &offd[0], eig_mid_before);
    r_mid_after  = lapack::sturm( n, &diag[0], &offd[0], eig_mid_after );

    if (verbose >= 2) {
        printf( "\n"
                "r_midbefore=%lld r_midafter=%lld."
                " Expected <%lld, >=%lld\n",
                llong(r_mid_before), llong(r_mid_after), llong(eig_mid_idx+1),
                llong(eig_mid_idx+1));
    }

    // The number of eigenvalues less than mid should be the middle index itself.
    // If n==100, n/2=50, but zero relative, eigv[50] is actually the 51st
    // eigenvalue, so we'd expect 50 less than that.
    if (r_mid_before > eig_mid_idx) {
        ++error;
    }

    if (r_mid_after  < (eig_mid_idx+1)) {
        ++error;
    }

    r_max_before = lapack::sturm( n, &diag[0], &offd[0], eig_max_before);
    r_max_after  = lapack::sturm( n, &diag[0], &offd[0], eig_max_after );

    if (verbose >= 2) {
        printf( "\n"
                "r_maxbefore=%lld r_maxafter=%lld."
                " Expected <%lld, =%lld\n",
                llong(r_max_before), llong(r_max_after), llong(n), llong(n));
    }

    if (r_max_before > (n-1)) {
        ++error;
    }

    if (r_max_after !=  n   ) {
        ++error;
    }

    time = testsweeper::get_wtime() - time;

    params.ref_time() = time;
    params.error() = error;
    params.okay() = (error == 0);
}

// -----------------------------------------------------------------------------
void test_sturm( Params& params, bool run )
{
    switch (params.datatype()) {
        case testsweeper::DataType::Single:
            test_sturm_work< float >( params, run );
            break;

        case testsweeper::DataType::Double:
            test_sturm_work< double >( params, run );
            break;

        default:
            throw std::runtime_error( "unsupported datatype" );
            break;
    }
}