1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
// this is similar to blaspp/test/test_syr.hh,
// except it uses LAPACK++ instead of calling Fortran LAPACK,
// and tests syr< complex >.
#include "test.hh"
#include "lapack.hh"
#include "blas/flops.hh"
#include "print_matrix.hh"
#include "check_gemm2.hh" // uses LAPACK++ instead of Fortran lapack
#include "cblas_wrappers.hh"
#include "blas/syr.hh" // from BLAS++
// -----------------------------------------------------------------------------
template< typename TA, typename TX >
void test_syr_work( Params& params, bool run )
{
using blas::real;
using blas::imag;
using scalar_t = blas::scalar_type< TA, TX >;
using real_t = blas::real_type< scalar_t >;
// get & mark input values
blas::Layout layout = params.layout();
blas::Uplo uplo = params.uplo();
scalar_t alpha = params.alpha.get<scalar_t>();
int64_t n = params.dim.n();
int64_t incx = params.incx();
int64_t align = params.align();
int64_t verbose = params.verbose();
// mark non-standard output values
params.ref_time();
params.ref_gflops();
params.gflops();
if (! run)
return;
// setup
int64_t lda = roundup( n, align );
size_t size_A = size_t(lda)*n;
size_t size_x = (n - 1) * std::abs(incx) + 1;
std::vector<TA> A ( size_A );
std::vector<TA> Aref( size_A );
std::vector<TX> x ( size_x );
int64_t idist = 1;
int64_t iseed[4] = { 0, 0, 0, 1 };
lapack::generate_matrix( params.matrix, n, n, &A[0], lda );
lapack::larnv( idist, iseed, size_x, &x[0] );
Aref = A;
// norms for error check
real_t Anorm = lapack::lansy( lapack::Norm::Fro, uplo, n, &A[0], lda );
real_t Xnorm = blas::nrm2( n, &x[0], std::abs(incx) );
// test error exits
if (params.error_exit() == 'y') {
using blas::Layout;
using blas::Uplo;
assert_throw( blas::syr( Layout(0), uplo, n, alpha, &x[0], incx, &A[0], lda ), blas::Error );
assert_throw( blas::syr( layout, Uplo(0), n, alpha, &x[0], incx, &A[0], lda ), blas::Error );
assert_throw( blas::syr( layout, uplo, -1, alpha, &x[0], incx, &A[0], lda ), blas::Error );
assert_throw( blas::syr( layout, uplo, n, alpha, &x[0], 0, &A[0], lda ), blas::Error );
assert_throw( blas::syr( layout, uplo, n, alpha, &x[0], incx, &A[0], n-1 ), blas::Error );
}
if (verbose >= 1) {
printf( "\n"
"A n=%5lld, lda=%5lld, size=%10lld, norm=%.2e\n"
"x n=%5lld, inc=%5lld, size=%10lld, norm=%.2e\n",
llong( n ), llong( lda ), llong( size_A ), Anorm,
llong( n ), llong( incx ), llong( size_x ), Xnorm );
}
if (verbose >= 2) {
printf( "alpha = %.4e + %.4ei;\n",
real(alpha), imag(alpha) );
printf( "A = " ); print_matrix( n, n, &A[0], lda );
printf( "x = " ); print_vector( n, &x[0], incx );
}
// run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
blas::syr( layout, uplo, n, alpha, &x[0], incx, &A[0], lda );
time = testsweeper::get_wtime() - time;
params.time() = time * 1000; // msec
double gflop = blas::Gflop< scalar_t >::syr( n );
params.gflops() = gflop / time;
if (verbose >= 2) {
printf( "A2 = " ); print_matrix( n, n, &A[0], lda );
}
if (params.check() == 'y') {
// run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
cblas_syr( cblas_layout_const(layout), cblas_uplo_const(uplo),
n, alpha, &x[0], incx, &Aref[0], lda );
time = testsweeper::get_wtime() - time;
params.ref_time() = time * 1000; // msec
params.ref_gflops() = gflop / time;
if (verbose >= 2) {
printf( "Aref = " ); print_matrix( n, n, &Aref[0], lda );
}
// check error compared to reference
// beta = 1
real_t error;
int64_t okay;
check_herk( uplo, n, 1, alpha, scalar_t(1), Xnorm, Xnorm, Anorm,
&Aref[0], lda, &A[0], lda, &error, &okay );
params.error() = error;
params.okay() = okay;
}
}
// -----------------------------------------------------------------------------
void test_syr( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_syr_work< float, float >( params, run );
break;
case testsweeper::DataType::Double:
test_syr_work< double, double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_syr_work< std::complex<float>, std::complex<float> >
( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_syr_work< std::complex<double>, std::complex<double> >
( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|