1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include <vector>
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_syrfs_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::Uplo uplo = params.uplo();
int64_t n = params.dim.n();
int64_t nrhs = params.nrhs();
int64_t align = params.align();
params.matrix.mark();
// mark non-standard output values
params.ref_time();
// params.ref_gflops();
// params.gflops();
if (! run)
return;
// ---------- setup
int64_t lda = roundup( blas::max( 1, n ), align );
int64_t ldaf = roundup( blas::max( 1, n ), align );
int64_t ldb = roundup( blas::max( 1, n ), align );
int64_t ldx = roundup( blas::max( 1, n ), align );
size_t size_A = (size_t) lda * n;
size_t size_AF = (size_t) ldaf * n;
size_t size_ipiv = (size_t) (n);
size_t size_B = (size_t) ldb * nrhs;
size_t size_X = (size_t) ldx * nrhs;
size_t size_ferr = (size_t) (nrhs);
size_t size_berr = (size_t) (nrhs);
std::vector< scalar_t > A( size_A );
std::vector< scalar_t > AF( size_AF );
std::vector< int64_t > ipiv_tst( size_ipiv );
std::vector< lapack_int > ipiv_ref( size_ipiv );
std::vector< scalar_t > B( size_B );
std::vector< scalar_t > X_tst( size_X );
std::vector< scalar_t > X_ref( size_X );
std::vector< real_t > ferr_tst( size_ferr );
std::vector< real_t > ferr_ref( size_ferr );
std::vector< real_t > berr_tst( size_berr );
std::vector< real_t > berr_ref( size_berr );
lapack::generate_matrix( params.matrix, n, n, &A[0], lda );
int64_t idist = 1;
int64_t iseed[4] = { 0, 1, 2, 3 };
lapack::larnv( idist, iseed, B.size(), &B[0] );
lapack::larnv( idist, iseed, X_tst.size(), &X_tst[0] );
X_ref = X_tst;
// ---------- preserve A before factoring for use in syrfs
AF = A;
// ---------- factor before test
int64_t info_factor = lapack::sytrf( uplo, n, &AF[0], lda, &ipiv_tst[0] );
if (info_factor != 0) {
fprintf( stderr, "lapack::sytrf returned error %lld\n", llong( info_factor ) );
}
// ---------- solve before test
int64_t info_solve = lapack::sytrs( uplo, n, nrhs, &AF[0], lda, &ipiv_tst[0], &B[0], ldb );
if (info_solve != 0) {
fprintf( stderr, "lapack::sytrs returned error %lld\n", llong( info_solve ) );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
int64_t info_tst = lapack::syrfs( uplo, n, nrhs, &A[0], lda, &AF[0], ldaf, &ipiv_tst[0], &B[0], ldb, &X_tst[0], ldx, &ferr_tst[0], &berr_tst[0] );
time = testsweeper::get_wtime() - time;
if (info_tst != 0) {
fprintf( stderr, "lapack::syrfs returned error %lld\n", llong( info_tst ) );
}
params.time() = time;
// double gflop = lapack::Gflop< scalar_t >::syrfs( n, nrhs );
// params.gflops() = gflop / time;
if (params.ref() == 'y' || params.check() == 'y') {
// ---------- reuse factorization and initialize ipiv_ref
std::copy( ipiv_tst.begin(), ipiv_tst.end(), ipiv_ref.begin() );
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_syrfs( to_char( uplo ), n, nrhs, &A[0], lda, &AF[0], ldaf, &ipiv_ref[0], &B[0], ldb, &X_ref[0], ldx, &ferr_ref[0], &berr_ref[0] );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_syrfs returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
// params.ref_gflops() = gflop / time;
// ---------- check error compared to reference
real_t error = 0;
if (info_tst != info_ref) {
error = 1;
}
error += abs_error( X_tst, X_ref );
error += abs_error( ferr_tst, ferr_ref );
error += abs_error( berr_tst, berr_ref );
params.error() = error;
params.okay() = (error == 0); // expect lapackpp == lapacke
}
}
// -----------------------------------------------------------------------------
void test_syrfs( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_syrfs_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_syrfs_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_syrfs_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_syrfs_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
|