1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include "print_matrix.hh"
#include <vector>
#if LAPACK_VERSION >= 30400 // >= 3.4.0
// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_tpmqrt_work( Params& params, bool run )
{
using real_t = blas::real_type< scalar_t >;
// get & mark input values
lapack::Side side = params.side();
lapack::Op trans = params.trans();
int64_t m = params.dim.m();
int64_t n = params.dim.n();
int64_t k = params.dim.k();
int64_t l = params.l();
int64_t nb = params.nb();
int64_t align = params.align();
int64_t verbose = params.verbose();
// mark non-standard output values
params.ref_time();
params.ref_gflops();
params.gflops();
params.msg();
if (! run)
return;
// skip invalid sizes
if (k < nb || nb < 1) {
params.msg() = "skipping: k >= nb >= 1";
return;
}
if (side == lapack::Side::Left && std::min( m, k ) < l) {
params.msg() = "skipping: side=left requires min( m, k ) >= l >= 0";
return;
}
if (side == lapack::Side::Right && std::min( n, k ) < l) {
params.msg() = "skipping: side=right requires min( n, k ) >= l >= 0";
return;
}
// ---------- setup
// Householder vectors W, Q = \product_i (I - Wi Ti Wi^T)
// V1, Bhat1 are rectangular
// V2, Bhat2 are upper trapezoidal
// left, C = op(Q)*C:
// tpmqrt tpqrt
// C = [ A ] } k W = [ I ] } k [ What0 ] } k
// [ B ] } m [ V1 ] } m-l [ Vhat1 ] } m-l
// [ V2 ] } l [ Vhat2 ] } l
// n cols k cols k cols
//
// right, C = C * op(Q):
// tpmqrt tpqrt
// C = [ A, B ] } m W = [ I ] } k [ What0 ] } k
// k, n cols [ V1 ] } n-l [ Vhat1 ] } n-l
// [ V2 ] } l [ Vhat2 ] } l
// k cols k cols
//
// In tpqrt, What is A, Vhat is B.
//
int64_t Vm = (side == blas::Side::Left ? m : n);
int64_t Am = (side == blas::Side::Left ? k : m);
int64_t An = (side == blas::Side::Left ? n : k);
int64_t ldv = roundup( blas::max( 1, Vm ), align );
int64_t ldt = roundup( blas::max( 1, nb ), align );
int64_t lda = roundup( blas::max( 1, Am ), align );
int64_t ldb = roundup( blas::max( 1, m ), align );
int64_t ldw = roundup( blas::max( 1, k ), align );
size_t size_V = (size_t) ldv * k; // m-by-k (Left) or n-by-k (Right)
size_t size_T = (size_t) ldt * k; // nb-by-k
size_t size_A = (size_t) lda * An; // k-by-n (Left) or m-by-k (Right)
size_t size_B = (size_t) ldb * n; // m-by-n
size_t size_W0 = (size_t) ldw * k; // k-by-k
std::vector< scalar_t > V( size_V );
std::vector< scalar_t > T( size_T );
std::vector< scalar_t > A_tst( size_A );
std::vector< scalar_t > A_ref( size_A );
std::vector< scalar_t > B_tst( size_B );
std::vector< scalar_t > B_ref( size_B );
std::vector< scalar_t > W0( size_W0 );
int64_t idist = 1;
int64_t iseed[4] = { 0, 1, 2, 3 };
lapack::larnv( idist, iseed, V.size(), &V[0] );
lapack::larnv( idist, iseed, T.size(), &T[0] );
lapack::larnv( idist, iseed, A_tst.size(), &A_tst[0] );
lapack::larnv( idist, iseed, B_tst.size(), &B_tst[0] );
lapack::larnv( idist, iseed, W0.size(), &W0[0] );
A_ref = A_tst;
B_ref = B_tst;
// Get data for Householder reflectors in V and T by factoring matrix
// D = [ What0 ] = QR.
// [ Vhat ]
// When applying Q = I - W T W^H with
// W = [ I ],
// [ V ]
// the top block, corresponding to W0, is identity, so isn't used in tpmqrt.
// Using random data, without factoring, can lead to nan in tpmqrt.
int64_t info = lapack::tpqrt( Vm, k, l, nb, &W0[0], ldw, &V[0], ldv, &T[0], ldt );
if (info != 0) {
fprintf( stderr, "lapack::tpqrt returned error %lld\n", llong( info ) );
}
if (verbose > 1) {
printf( "V =" ); print_matrix( Vm, k, &V[0], ldv );
printf( "T =" ); print_matrix( nb, k, &T[0], ldt );
printf( "A =" ); print_matrix( Am, An, &A_tst[0], lda );
printf( "B =" ); print_matrix( m, n, &B_tst[0], ldb );
}
// ---------- run test
testsweeper::flush_cache( params.cache() );
double time = testsweeper::get_wtime();
int64_t info_tst = lapack::tpmqrt( side, trans, m, n, k, l, nb, &V[0], ldv, &T[0], ldt, &A_tst[0], lda, &B_tst[0], ldb );
time = testsweeper::get_wtime() - time;
if (info_tst != 0) {
fprintf( stderr, "lapack::tpmqrt returned error %lld\n", llong( info_tst ) );
}
params.time() = time;
double gflop = lapack::Gflop< scalar_t >::unmqr( side, m, n, k ); // estimate
params.gflops() = gflop / time;
if (verbose > 1) {
printf( "Aout =" ); print_matrix( Am, An, &A_tst[0], lda );
printf( "Bout =" ); print_matrix( m, n, &B_tst[0], ldb );
}
if (params.ref() == 'y' || params.check() == 'y') {
// ---------- run reference
testsweeper::flush_cache( params.cache() );
time = testsweeper::get_wtime();
int64_t info_ref = LAPACKE_tpmqrt( to_char( side ), to_char( trans ), m, n, k, l, nb, &V[0], ldv, &T[0], ldt, &A_ref[0], lda, &B_ref[0], ldb );
time = testsweeper::get_wtime() - time;
if (info_ref != 0) {
fprintf( stderr, "LAPACKE_tpmqrt returned error %lld\n", llong( info_ref ) );
}
params.ref_time() = time;
params.ref_gflops() = gflop / time;
if (verbose > 1) {
printf( "Aref =" ); print_matrix( Am, An, &A_ref[0], lda );
printf( "Bref =" ); print_matrix( m, n, &B_ref[0], ldb );
}
// ---------- check error compared to reference
real_t error = 0;
if (info_tst != info_ref) {
error = 1;
}
error += abs_error( A_tst, A_ref );
error += abs_error( B_tst, B_ref );
params.error() = error;
params.okay() = (error == 0); // expect lapackpp == lapacke
}
}
// -----------------------------------------------------------------------------
void test_tpmqrt( Params& params, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_tpmqrt_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_tpmqrt_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_tpmqrt_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_tpmqrt_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error( "unknown datatype" );
break;
}
}
#else
// -----------------------------------------------------------------------------
void test_tpmqrt( Params& params, bool run )
{
fprintf( stderr, "tpmqrt requires LAPACK >= 3.4.0\n\n" );
exit(0);
}
#endif // LAPACK >= 3.4.0
|