File: test_tpmqrt.cc

package info (click to toggle)
lapackpp 2024.10.26-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,500 kB
  • sloc: cpp: 80,181; ansic: 27,660; python: 4,838; xml: 182; perl: 99; makefile: 53; sh: 23
file content (213 lines) | stat: -rw-r--r-- 7,724 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.

#include "test.hh"
#include "lapack.hh"
#include "lapack/flops.hh"
#include "print_matrix.hh"
#include "error.hh"
#include "lapacke_wrappers.hh"
#include "print_matrix.hh"

#include <vector>

#if LAPACK_VERSION >= 30400  // >= 3.4.0

// -----------------------------------------------------------------------------
template< typename scalar_t >
void test_tpmqrt_work( Params& params, bool run )
{
    using real_t = blas::real_type< scalar_t >;

    // get & mark input values
    lapack::Side side = params.side();
    lapack::Op trans = params.trans();
    int64_t m = params.dim.m();
    int64_t n = params.dim.n();
    int64_t k = params.dim.k();
    int64_t l = params.l();
    int64_t nb = params.nb();
    int64_t align = params.align();
    int64_t verbose = params.verbose();

    // mark non-standard output values
    params.ref_time();
    params.ref_gflops();
    params.gflops();
    params.msg();

    if (! run)
        return;

    // skip invalid sizes
    if (k < nb || nb < 1) {
        params.msg() = "skipping: k >= nb >= 1";
        return;
    }
    if (side == lapack::Side::Left  && std::min( m, k ) < l) {
        params.msg() = "skipping: side=left requires min( m, k ) >= l >= 0";
        return;
    }
    if (side == lapack::Side::Right && std::min( n, k ) < l) {
        params.msg() = "skipping: side=right requires min( n, k ) >= l >= 0";
        return;
    }

    // ---------- setup
    // Householder vectors W, Q = \product_i (I - Wi Ti Wi^T)
    // V1, Bhat1 are rectangular
    // V2, Bhat2 are upper trapezoidal
    // left, C = op(Q)*C:
    //      tpmqrt                                  tpqrt
    //      C = [ A ] } k       W = [ I  ] } k      [ What0 ] } k
    //          [ B ] } m           [ V1 ] } m-l    [ Vhat1 ] } m-l
    //                              [ V2 ] } l      [ Vhat2 ] } l
    //            n cols              k cols          k cols
    //
    // right, C = C * op(Q):
    //      tpmqrt                                  tpqrt
    //      C = [ A, B ] } m    W = [ I  ] } k      [ What0 ] } k
    //            k, n cols         [ V1 ] } n-l    [ Vhat1 ] } n-l
    //                              [ V2 ] } l      [ Vhat2 ] } l
    //                                k cols          k cols
    //
    // In tpqrt, What is A, Vhat is B.
    //
    int64_t Vm = (side == blas::Side::Left ? m : n);
    int64_t Am = (side == blas::Side::Left ? k : m);
    int64_t An = (side == blas::Side::Left ? n : k);
    int64_t ldv = roundup( blas::max( 1, Vm ), align );
    int64_t ldt = roundup( blas::max( 1, nb ), align );
    int64_t lda = roundup( blas::max( 1, Am ), align );
    int64_t ldb = roundup( blas::max( 1, m  ), align );
    int64_t ldw = roundup( blas::max( 1, k  ), align );
    size_t size_V  = (size_t) ldv * k;   // m-by-k (Left) or n-by-k (Right)
    size_t size_T  = (size_t) ldt * k;   // nb-by-k
    size_t size_A  = (size_t) lda * An;  // k-by-n (Left) or m-by-k (Right)
    size_t size_B  = (size_t) ldb * n;   // m-by-n
    size_t size_W0 = (size_t) ldw * k;   // k-by-k

    std::vector< scalar_t > V( size_V );
    std::vector< scalar_t > T( size_T );
    std::vector< scalar_t > A_tst( size_A );
    std::vector< scalar_t > A_ref( size_A );
    std::vector< scalar_t > B_tst( size_B );
    std::vector< scalar_t > B_ref( size_B );
    std::vector< scalar_t > W0( size_W0 );

    int64_t idist = 1;
    int64_t iseed[4] = { 0, 1, 2, 3 };
    lapack::larnv( idist, iseed, V.size(), &V[0] );
    lapack::larnv( idist, iseed, T.size(), &T[0] );
    lapack::larnv( idist, iseed, A_tst.size(), &A_tst[0] );
    lapack::larnv( idist, iseed, B_tst.size(), &B_tst[0] );
    lapack::larnv( idist, iseed, W0.size(), &W0[0] );
    A_ref = A_tst;
    B_ref = B_tst;

    // Get data for Householder reflectors in V and T by factoring matrix
    //     D = [ What0 ] = QR.
    //         [ Vhat  ]
    // When applying Q = I - W T W^H with
    //     W = [ I ],
    //         [ V ]
    // the top block, corresponding to W0, is identity, so isn't used in tpmqrt.
    // Using random data, without factoring, can lead to nan in tpmqrt.
    int64_t info = lapack::tpqrt( Vm, k, l, nb, &W0[0], ldw, &V[0], ldv, &T[0], ldt );
    if (info != 0) {
        fprintf( stderr, "lapack::tpqrt returned error %lld\n", llong( info ) );
    }

    if (verbose > 1) {
        printf( "V =" ); print_matrix( Vm, k,  &V[0], ldv );
        printf( "T =" ); print_matrix( nb, k,  &T[0], ldt );
        printf( "A =" ); print_matrix( Am, An, &A_tst[0], lda );
        printf( "B =" ); print_matrix( m,  n,  &B_tst[0], ldb );
    }

    // ---------- run test
    testsweeper::flush_cache( params.cache() );
    double time = testsweeper::get_wtime();
    int64_t info_tst = lapack::tpmqrt( side, trans, m, n, k, l, nb, &V[0], ldv, &T[0], ldt, &A_tst[0], lda, &B_tst[0], ldb );
    time = testsweeper::get_wtime() - time;
    if (info_tst != 0) {
        fprintf( stderr, "lapack::tpmqrt returned error %lld\n", llong( info_tst ) );
    }

    params.time() = time;
    double gflop = lapack::Gflop< scalar_t >::unmqr( side, m, n, k );  // estimate
    params.gflops() = gflop / time;

    if (verbose > 1) {
        printf( "Aout =" ); print_matrix( Am, An, &A_tst[0], lda );
        printf( "Bout =" ); print_matrix( m,  n,  &B_tst[0], ldb );
    }

    if (params.ref() == 'y' || params.check() == 'y') {
        // ---------- run reference
        testsweeper::flush_cache( params.cache() );
        time = testsweeper::get_wtime();
        int64_t info_ref = LAPACKE_tpmqrt( to_char( side ), to_char( trans ), m, n, k, l, nb, &V[0], ldv, &T[0], ldt, &A_ref[0], lda, &B_ref[0], ldb );
        time = testsweeper::get_wtime() - time;
        if (info_ref != 0) {
            fprintf( stderr, "LAPACKE_tpmqrt returned error %lld\n", llong( info_ref ) );
        }

        params.ref_time() = time;
        params.ref_gflops() = gflop / time;

        if (verbose > 1) {
            printf( "Aref =" ); print_matrix( Am, An, &A_ref[0], lda );
            printf( "Bref =" ); print_matrix( m,  n,  &B_ref[0], ldb );
        }

        // ---------- check error compared to reference
        real_t error = 0;
        if (info_tst != info_ref) {
            error = 1;
        }
        error += abs_error( A_tst, A_ref );
        error += abs_error( B_tst, B_ref );
        params.error() = error;
        params.okay() = (error == 0);  // expect lapackpp == lapacke
    }
}

// -----------------------------------------------------------------------------
void test_tpmqrt( Params& params, bool run )
{
    switch (params.datatype()) {
        case testsweeper::DataType::Single:
            test_tpmqrt_work< float >( params, run );
            break;

        case testsweeper::DataType::Double:
            test_tpmqrt_work< double >( params, run );
            break;

        case testsweeper::DataType::SingleComplex:
            test_tpmqrt_work< std::complex<float> >( params, run );
            break;

        case testsweeper::DataType::DoubleComplex:
            test_tpmqrt_work< std::complex<double> >( params, run );
            break;

        default:
            throw std::runtime_error( "unknown datatype" );
            break;
    }
}

#else

// -----------------------------------------------------------------------------
void test_tpmqrt( Params& params, bool run )
{
    fprintf( stderr, "tpmqrt requires LAPACK >= 3.4.0\n\n" );
    exit(0);
}

#endif  // LAPACK >= 3.4.0