1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
#!/usr/bin/python3
# Copyright 2015 Martin C. Frith
# SPDX-License-Identifier: GPL-3.0-or-later
# References:
# [Fri19] How sequence alignment scores correspond to probability models,
# MC Frith, Bioinformatics, 2019.
from __future__ import division, print_function
import gzip
import math
import optparse
import os
import random
import signal
import subprocess
import sys
import tempfile
proteinAlphabet20 = "ACDEFGHIKLMNPQRSTVWY"
proteinAlphabet21 = proteinAlphabet20 + "*"
def myOpen(fileName): # faster than fileinput
if fileName == "-":
return sys.stdin
if fileName.endswith(".gz"):
return gzip.open(fileName, "rt") # xxx dubious for Python2
return open(fileName)
def rootOfIncreasingFunction(func, lowerBound, upperBound, args):
# Find x such that func(x, *args) == 0
gap = upperBound - lowerBound
while True:
gap *= 0.5
mid = lowerBound + gap
if mid <= lowerBound:
return mid
if func(mid, *args) < 0:
lowerBound = mid
def rootOfDecreasingFunction(func, lowerBound, upperBound, args):
# Find x such that func(x, *args) == 0
gap = upperBound - lowerBound
while True:
gap *= 0.5
mid = lowerBound + gap
if mid <= lowerBound:
return mid
if func(mid, *args) > 0:
lowerBound = mid
def homogeneousLetterFreqs(scale, matScores):
# Solve the simultaneous equations in Section 2.1 of [Fri19]
expMat = [[math.exp(j / scale) for j in i] for i in matScores]
m = [row[:] + [1.0] for row in expMat] # augmented matrix
n = len(expMat)
for k in range(n):
iMax = k
for i in range(k, n):
if abs(m[i][k]) > abs(m[iMax][k]):
iMax = i
if iMax > k:
m[k], m[iMax] = m[iMax], m[k]
if abs(m[k][k]) <= 0:
raise ArithmeticError("singular matrix")
for i in range(n):
if i != k:
mul = m[i][k] / m[k][k]
for j in range(k + 1, n + 1):
m[i][j] -= m[k][j] * mul
return [m[k][n] / m[k][k] for k in range(n)]
def randomSample(things, sampleSize):
"""Randomly get sampleSize things (or all if fewer)."""
reservoir = [] # "reservoir sampling" algorithm
for i, x in enumerate(things):
if i < sampleSize:
reservoir.append(x)
else:
r = random.randrange(i + 1)
if r < sampleSize:
reservoir[r] = x
return reservoir
def writeWords(outFile, words):
print(*words, file=outFile)
def seqInput(fileNames):
if not fileNames:
fileNames = ["-"]
for name in fileNames:
f = myOpen(name)
seqType = 0
for line in f:
if seqType == 0:
if line[0] == ">":
seqType = 1
seq = []
elif line[0] == "@":
seqType = 2
lineType = 1
elif seqType == 1: # fasta
if line[0] == ">":
yield "".join(seq), ""
seq = []
else:
seq.append(line.rstrip())
elif seqType == 2: # fastq
if lineType == 1:
seq = line.rstrip()
elif lineType == 3:
yield seq, line.rstrip()
lineType = (lineType + 1) % 4
if seqType == 1: yield "".join(seq), ""
f.close()
def isGoodChunk(chunk):
for i in chunk:
for j in i[3]:
if j not in "Nn":
return True
return False
def chunkInput(opts, sequences):
chunkCount = 0
chunk = []
wantedLength = opts.sample_length
for i, x in enumerate(sequences):
seq, qual = x
if all(i in "Nn" for i in seq): continue
seqLength = len(seq)
beg = 0
while beg < seqLength:
length = min(wantedLength, seqLength - beg)
end = beg + length
segment = i, beg, end, seq[beg:end], qual[beg:end]
chunk.append(segment)
wantedLength -= length
if not wantedLength:
if isGoodChunk(chunk):
yield chunk
chunkCount += 1
chunk = []
wantedLength = opts.sample_length
beg = end
if chunk and chunkCount < opts.sample_number:
yield chunk
def writeSegment(outfile, segment):
if not segment: return
i, beg, end, seq, qual = segment
name = str(i) + ":" + str(beg)
if qual:
outfile.write("@" + name + "\n")
outfile.write(seq)
outfile.write("\n+\n")
outfile.write(qual)
else:
outfile.write(">" + name + "\n")
outfile.write(seq)
outfile.write("\n")
def getSeqSample(opts, queryFiles, outfile):
sequences = seqInput(queryFiles)
chunks = chunkInput(opts, sequences)
sample = randomSample(chunks, opts.sample_number)
sample.sort()
x = None
for chunk in sample:
for y in chunk:
if x and y[0] == x[0] and y[1] == x[2]:
x = x[0], x[1], y[2], x[3] + y[3], x[4] + y[4]
else:
writeSegment(outfile, x)
x = y
writeSegment(outfile, x)
def scaleFromHeader(lines):
for line in lines:
for i in line.split():
if i.startswith("t="):
return float(i[2:])
raise Exception("couldn't read the scale")
def countsFromLastOutput(lines, opts):
nTransitions = 9 if opts.codon else 5
tranCounts = [1.0] * nTransitions # +1 pseudocounts
tranCounts[1] = 2.0 # deletes: opens + extensions, so 2 pseudocounts
tranCounts[2] = 2.0 # inserts: opens + extensions, so 2 pseudocounts
countMatrix = None
alignments = 0 # no pseudocount here
for line in lines:
if line[0] == "s":
strand = line.split()[4] # slow?
if line[0] == "c":
counts = [float(i) for i in line.split()[1:]]
if not countMatrix:
matrixSize = len(counts) - nTransitions
nCols = 64 if opts.codon else int(math.sqrt(matrixSize))
nRows = matrixSize // nCols
pseudocount = 0.0 if opts.codon else 1.0
countMatrix = [[pseudocount] * nCols for i in range(nRows)]
if not opts.codon:
identities = sum(counts[i * nCols + i] for i in range(nRows))
alignmentLength = sum(counts[matrixSize + i] for i in range(3))
if 100 * identities > opts.pid * alignmentLength:
continue
for i in range(nRows):
for j in range(nCols):
if strand == "+" or opts.S != "1":
countMatrix[i][j] += counts[i * nCols + j]
else:
countMatrix[-1-i][-1-j] += counts[i * nCols + j]
for i in range(nTransitions):
tranCounts[i] += counts[matrixSize + i]
alignments += 1
if not alignments:
raise Exception("no alignments")
if opts.codon:
pseudocounts = nRows * 32 # xxx ???
rowSums = [sum(i) + 1 for i in countMatrix]
colSums = [sum(i) + 1 for i in zip(*countMatrix)]
mul = pseudocounts / (sum(rowSums) * sum(colSums))
countMatrix = [[x + mul * i * j for j, x in zip(colSums, row)]
for i, row in zip(rowSums, countMatrix)]
return countMatrix, tranCounts + [alignments]
def scoreFromProb(scale, prob):
if prob > 0: logProb = math.log(prob)
else: logProb = -800 # exp(-800) is exactly zero, on my computer
return int(round(scale * logProb))
def costFromProb(scale, prob):
return -scoreFromProb(scale, prob)
def guessAlphabet(matrixSize):
if matrixSize == 4: return "ACGT"
if matrixSize == 20: return proteinAlphabet20
raise Exception("can't handle unusual alphabets")
def writeMatrixHead(outFile, prefix, alphabet, formatString):
writeWords(outFile, [prefix + " "] + [formatString % k for k in alphabet])
def writeMatrixBody(outFile, prefix, alphabet, matrix, formatString):
for i, j in zip(alphabet, matrix):
writeWords(outFile, [prefix + i] + [formatString % k for k in j])
def writeCountMatrix(outFile, matrix, prefix):
alphabet = guessAlphabet(len(matrix))
writeMatrixHead(outFile, prefix, alphabet, "%-14s")
writeMatrixBody(outFile, prefix, alphabet, matrix, "%-14.12g")
def writeProbMatrix(outFile, matrix, prefix):
alphabet = guessAlphabet(len(matrix))
writeMatrixHead(outFile, prefix, alphabet, "%-14s")
writeMatrixBody(outFile, prefix, alphabet, matrix, "%-14g")
def writeScoreMatrix(outFile, matrix, prefix):
alphabet = guessAlphabet(len(matrix))
writeMatrixHead(outFile, prefix, alphabet, "%6s")
writeMatrixBody(outFile, prefix, alphabet, matrix, "%6s")
def matProbsFromCounts(counts, opts):
r = list(range(len(counts)))
if opts.revsym: # add complement (reverse strand) substitutions
counts = [[counts[i][j] + counts[-1-i][-1-j] for j in r] for i in r]
if opts.matsym: # symmetrize the substitution matrix
counts = [[counts[i][j] + counts[j][i] for j in r] for i in r]
identities = sum(counts[i][i] for i in r)
total = sum(map(sum, counts))
probs = [[j / total for j in i] for i in counts]
print("# substitution percent identity: %g" % (100 * identities / total))
print()
print("# count matrix "
"(query letters = columns, reference letters = rows):")
writeCountMatrix(sys.stdout, counts, "# ")
print()
print("# probability matrix "
"(query letters = columns, reference letters = rows):")
writeProbMatrix(sys.stdout, probs, "# ")
print()
return probs
def probImbalance(endProb, matchProb, firstDelProb, delExtendProb,
firstInsProb, insExtendProb):
# (RHS - LHS) of Equation (12) in [Fri19]
d = firstDelProb / (endProb - delExtendProb)
i = firstInsProb / (endProb - insExtendProb)
return 1 - matchProb / (endProb * endProb) - d - i
def balancedEndProb(*args):
matchProb, firstDelProb, delExtendProb, firstInsProb, insExtendProb = args
lowerBound = max(delExtendProb, insExtendProb)
upperBound = 1.0
return rootOfIncreasingFunction(probImbalance,
lowerBound, upperBound, args)
def gapProbsFromCounts(counts, opts):
matches, deletes, inserts, delOpens, insOpens, alignments = counts
gaps = deletes + inserts
gapOpens = delOpens + insOpens
denominator = matches + gapOpens + (alignments + 1) # +1 pseudocount
matchProb = matches / denominator
if opts.gapsym:
delOpenProb = gapOpens / denominator / 2
insOpenProb = gapOpens / denominator / 2
delGrowProb = (gaps - gapOpens) / gaps
insGrowProb = (gaps - gapOpens) / gaps
else:
delOpenProb = delOpens / denominator
insOpenProb = insOpens / denominator
delGrowProb = (deletes - delOpens) / deletes
insGrowProb = (inserts - insOpens) / inserts
print("# aligned letter pairs: %.12g" % matches)
print("# deletes: %.12g" % deletes)
print("# inserts: %.12g" % inserts)
print("# delOpens: %.12g" % delOpens)
print("# insOpens: %.12g" % insOpens)
print("# alignments:", alignments)
print("# mean delete size: %g" % (deletes / delOpens))
print("# mean insert size: %g" % (inserts / insOpens))
print("# matchProb: %g" % matchProb)
print("# delOpenProb: %g" % delOpenProb)
print("# insOpenProb: %g" % insOpenProb)
print("# delExtendProb: %g" % delGrowProb)
print("# insExtendProb: %g" % insGrowProb)
print()
return matchProb, (delOpenProb, delGrowProb), (insOpenProb, insGrowProb)
def gapRatiosFromProbs(matchProb, delProbs, insProbs):
delOpenProb, delGrowProb = delProbs
insOpenProb, insGrowProb = insProbs
delCloseProb = 1 - delGrowProb
firstDelProb = delOpenProb * delCloseProb
insCloseProb = 1 - insGrowProb
firstInsProb = insOpenProb * insCloseProb
endProb = balancedEndProb(matchProb, firstDelProb, delGrowProb,
firstInsProb, insGrowProb)
# probably, endProb is negligibly less than 1
matchRatio = matchProb / (endProb * endProb)
firstDelRatio = firstDelProb / endProb
delGrowRatio = delGrowProb / endProb
delRatios = firstDelRatio, delGrowRatio
firstInsRatio = firstInsProb / endProb
insGrowRatio = insGrowProb / endProb
insRatios = firstInsRatio, insGrowRatio
return matchRatio, delRatios, insRatios
def scoreFromLetterProbs(scale, matchRatio, pairProb, rowProb, colProb):
# Equation (4) in [Fri19]
probRatio = pairProb / (rowProb * colProb)
return scoreFromProb(scale, matchRatio * probRatio)
def matScoresFromProbs(scale, matchRatio, matProbs, rowProbs, colProbs):
return [[scoreFromLetterProbs(scale, matchRatio, matProbs[i][j], x, y)
for j, y in enumerate(colProbs)] for i, x in enumerate(rowProbs)]
def gapCostsFromProbRatios(scale, firstGapRatio, gapExtendRatio):
# The next addition gets the alignment parameter from the path
# parameters, as in Supplementary section 3.1 of [Fri19]:
gapExtendRatio += firstGapRatio
firstGapCost = max(costFromProb(scale, firstGapRatio), 1)
gapExtendCost = max(costFromProb(scale, gapExtendRatio), 1)
return firstGapCost, gapExtendCost
def imbalanceFromGap(scale, firstGapCost, gapExtendCost):
firstGapRatio = math.exp(-firstGapCost / scale)
gapExtendRatio = math.exp(-gapExtendCost / scale)
# The next subtraction gets the path parameter from the alignment
# parameters, as in Supplementary section 3.1 of [Fri19]:
gapExtendRatio -= firstGapRatio
return firstGapRatio / (1 - gapExtendRatio)
def scoreImbalance(scale, matScores, delCosts, insCosts):
# C' - 1, where C' is defined in Equation (13) of [Fri19]
d = imbalanceFromGap(scale, *delCosts)
i = imbalanceFromGap(scale, *insCosts)
return 1 / sum(homogeneousLetterFreqs(scale, matScores)) + d + i - 1
def balancedScale(imbalanceFunc, nearScale, args):
# Find a scale, near nearScale, with balanced length probability
bump = 1.000001
rootFinders = rootOfDecreasingFunction, rootOfIncreasingFunction
value = imbalanceFunc(nearScale, *args)
if abs(value) <= 0:
return nearScale
oldLower = oldUpper = nearScale
while oldUpper < 2 * nearScale: # xxx ???
newLower = oldLower / bump
lowerValue = imbalanceFunc(newLower, *args)
if (lowerValue < 0) != (value < 0):
finder = rootFinders[value > 0]
return finder(imbalanceFunc, newLower, oldLower, args)
oldLower = newLower
newUpper = oldUpper * bump
upperValue = imbalanceFunc(newUpper, *args)
if (upperValue < 0) != (value < 0):
finder = rootFinders[value < 0]
return finder(imbalanceFunc, oldUpper, newUpper, args)
oldUpper = newUpper
return 0.0
def scoresAndScale(originalScale, matParams, delRatios, insRatios):
while True:
matScores = matScoresFromProbs(originalScale, *matParams)
delCosts = gapCostsFromProbRatios(originalScale, *delRatios)
insCosts = gapCostsFromProbRatios(originalScale, *insRatios)
args = matScores, delCosts, insCosts
scale = balancedScale(scoreImbalance, originalScale, args)
if scale > 0:
rowFreqs = homogeneousLetterFreqs(scale, zip(*matScores))
colFreqs = homogeneousLetterFreqs(scale, matScores)
if all(i >= 0 for i in rowFreqs + colFreqs):
return matScores, delCosts, insCosts, scale
print("# the integer-rounded scores are too inaccurate: "
"doubling the scale")
originalScale *= 2
### Routines for codons & frameshifts:
def initialCodonSubstitutionProbs(matchProb):
aa = "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG"
b1 = "TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG"
b2 = "TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG"
b3 = "TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG"
p = matchProb / 61
q = (1/64 - p) / 19
if q <= 0:
raise Exception("initial match probability must be < 61/64")
matrix = [[q for j in aa] for i in proteinAlphabet20]
for a, x, y, z in zip(aa, b1, b2, b3):
codon = "ACGT".index(x) * 16 + "ACGT".index(y) * 4 + "ACGT".index(z)
if a == "*":
for row in matrix:
row[codon] = 1 / (64 * 20)
else:
matrix[proteinAlphabet20.index(a)][codon] = p
return matrix
def initialCodonProbs(opts):
matProbs = initialCodonSubstitutionProbs(float(opts.r))
delOpenProb = float(opts.a)
delGrowProb = float(opts.b)
insOpenProb = float(opts.A)
insGrowProb = float(opts.B)
matchProb = 0.99 - delOpenProb - insOpenProb
if opts.F:
delProb1, delProb2, insProb1, insProb2 = map(float, opts.F.split(","))
else:
delProb1 = delProb2 = 1 - delGrowProb
insProb1 = insProb2 = 1 - insGrowProb
delProbs = delOpenProb, delGrowProb, delProb1, delProb2
insProbs = insOpenProb, insGrowProb, insProb1, insProb2
return matProbs, (matchProb, delProbs, insProbs)
def formattedCodons(spec):
a = "acgt"
return (format(i + j + k, spec) for i in a for j in a for k in a)
def printCodonCountMatrix(matrix):
print("#", " ", *formattedCodons("5"))
for x, row in zip(proteinAlphabet21, matrix):
print("#", x, *(format(i, "<5.4g") for i in row))
def writeCodonScoreMatrix(outFile, matrixAndProbs, prefix):
matrix, rowProbs, colProbs = matrixAndProbs
maxLen = max(len(str(x)) for row in matrix for x in row)
spec = ">" + str(max(maxLen, 3))
print(prefix + " ", *formattedCodons(spec), file=outFile)
for x, row, p in zip(proteinAlphabet21, matrix, rowProbs):
r = " ".join(format(i, spec) for i in row)
print(prefix + x, r, p, file=outFile)
print(prefix + " ", *(format(i, spec) for i in colProbs), file=outFile)
def codonMatProbsFromCounts(counts, opts):
total = sum(map(sum, counts))
probs = [[j / total for j in i] for i in counts]
print("# count matrix "
"(query letters = columns, reference letters = rows):")
printCodonCountMatrix(counts)
print()
return probs
def freqText(probability):
p = 100 * probability
t = format(p, ".2")
if len(t) > 3:
t = format(p, "<3.2g")
if len(t) > 3:
t = t.lstrip("0")
return t
def frameshiftProbImbalance(endProb, matchProb, delProbs, insProbs):
insOpenProb, insGrowProb, ins1, ins2 = insProbs
delOpenProb, delGrowProb, del1, del2 = delProbs
iNum = insOpenProb * (ins1 * endProb ** 2 + ins2 * (1 - ins1) * endProb
+ (1 - ins1) * (1 - ins2) * (1 - insGrowProb))
iDen = endProb ** 3 - (1 - ins1) * (1 - ins2) * insGrowProb
dNum = delOpenProb * (del1 / endProb ** 2 + del2 * (1 - del1) / endProb
+ (1 - del1) * (1 - del2) * (1 - delGrowProb))
dDen = endProb ** 3 - (1 - del1) * (1 - del2) * delGrowProb
return 1 - matchProb / endProb ** 6 - iNum / iDen - dNum / dDen
def balancedFrameshiftEndProb(*args):
matchProb, delProbs, insProbs = args
insOpenProb, insGrowProb, ins1, ins2 = insProbs
delOpenProb, delGrowProb, del1, del2 = delProbs
lowerBound = max((1 - ins1) * (1 - ins2) * insGrowProb,
(1 - del1) * (1 - del2) * delGrowProb) ** (1/3)
upperBound = 1.0
return rootOfIncreasingFunction(frameshiftProbImbalance,
lowerBound, upperBound, args)
def frameshiftProbsFromCounts(counts, opts):
(matches, deletes, inserts, delOpens0, insOpens0,
delOpens1, delOpens2, insOpens1, insOpens2, alignments) = counts
delOpens = delOpens0 + delOpens1 + delOpens2
insOpens = insOpens0 + insOpens1 + insOpens2
denominator = matches + insOpens + delOpens + (alignments + 1)
matchProb = matches / denominator
insOpenProb = insOpens / denominator
insGrowProb = (inserts - insOpens0) / inserts
insProb2 = insOpens2 / (inserts + insOpens2)
insProb1 = insOpens1 / (inserts + insOpens2 + insOpens1)
delOpenProb = delOpens / denominator
delGrowProb = (deletes - delOpens0) / deletes
delProb2 = delOpens2 / (deletes + delOpens2)
delProb1 = delOpens1 / (deletes + delOpens2 + delOpens1)
print("# aligned residue/codon pairs: %.12g" % matches)
print("# whole codon deletes: %.12g" % deletes)
print("# whole codon inserts: %.12g" % inserts)
print("# delOpens: %.12g" % delOpens)
print("# insOpens: %.12g" % insOpens)
print("# frameshifts del-1,del-2,ins+1,ins+2: %.12g,%.12g,%.12g,%.12g"
% (delOpens1, delOpens2, insOpens1, insOpens2))
print("# alignments:", alignments)
print("# matchProb: %g" % matchProb)
print("# delOpenProb: %g" % delOpenProb)
print("# insOpenProb: %g" % insOpenProb)
print("# delExtendProb: %g" % delGrowProb)
print("# insExtendProb: %g" % insGrowProb)
print("# frameshiftProbs del-1,del-2,ins+1,ins+2: %g,%g,%g,%g"
% (delProb1, delProb2, insProb1, insProb2))
print()
delProbs = delOpenProb, delGrowProb, delProb1, delProb2
insProbs = insOpenProb, insGrowProb, insProb1, insProb2
return matchProb, delProbs, insProbs
def frameshiftRatiosFromProbs(matchProb, delProbs, insProbs):
delOpenProb, delGrowProb, del1, del2 = delProbs
insOpenProb, insGrowProb, ins1, ins2 = insProbs
endProb = balancedFrameshiftEndProb(matchProb, delProbs, insProbs)
matchRatio = matchProb / endProb ** 6
insAdj = (1 - insGrowProb) / insGrowProb
insOpenRatio = insOpenProb * insAdj
insMean = ((1 - ins1) * (1 - ins2) * insGrowProb) ** (1/3)
insRatio0 = insMean / endProb
insRatio1 = ins1 / (insAdj * insMean)
insRatio2 = ins2 * (1 - ins1) / (insAdj * insMean ** 2)
insRatios = insOpenRatio, insRatio0, insRatio1, insRatio2
delAdj = (1 - delGrowProb) / delGrowProb
delOpenRatio = delOpenProb * delAdj
delMean = ((1 - del1) * (1 - del2) * delGrowProb) ** (1/3)
delRatio0 = delMean / endProb
delRatio1 = del1 / (delAdj * delMean * endProb ** 4)
delRatio2 = del2 * (1 - del1) / (delAdj * (delMean * endProb) ** 2)
delRatios = delOpenRatio, delRatio0, delRatio1, delRatio2
return matchRatio, delRatios, insRatios
def frameshiftCostsFromProbRatios(scale, gapRatios):
gapOpenRatio, gapRatio0, gapRatio1, gapRatio2 = gapRatios
gapOpenCost = costFromProb(scale, gapOpenRatio)
gapCost0 = max(costFromProb(scale, gapRatio0), 1)
gapCost1 = costFromProb(scale, gapRatio1)
gapCost2 = costFromProb(scale, gapRatio2)
return gapOpenCost, gapCost0, gapCost1, gapCost2
def frameshiftImbalanceFromGap(scale, gapCosts):
gapOpenCost, gapCost0, gapCost1, gapCost2 = gapCosts
a = math.exp(-gapOpenCost / scale)
b = math.exp(-gapCost0 / scale)
f = math.exp(-gapCost1 / scale)
g = math.exp(-gapCost2 / scale)
return a * b * (f + g * b + b * b) / (1 - b ** 3)
def frameshiftScoreImbalance(scale, matScores, rowProbs, colProbs,
delCosts, insCosts):
d = frameshiftImbalanceFromGap(scale, delCosts)
i = frameshiftImbalanceFromGap(scale, insCosts)
m = sum(x * y * math.exp(matScores[i][j] / scale)
for i, x in enumerate(rowProbs) for j, y in enumerate(colProbs))
return m + d + i - 1
def normalizedFreqs(freqs):
x = list(map(float, freqs))
s = sum(x)
return [i / s for i in x]
def codonScoresAndScale(originalScale, matParams, delRatios, insRatios):
matchRatio, matProbs, rowFreqs, colFreqs = matParams
rowProbs = normalizedFreqs(rowFreqs)
colProbs = normalizedFreqs(colFreqs)
matParams = matchRatio, matProbs, rowProbs, colProbs
matScores = matScoresFromProbs(originalScale, *matParams)
delCosts = frameshiftCostsFromProbRatios(originalScale, delRatios)
insCosts = frameshiftCostsFromProbRatios(originalScale, insRatios)
args = matScores, rowProbs, colProbs, delCosts, insCosts
scale = balancedScale(frameshiftScoreImbalance, originalScale, args)
assert scale > 0 # XXX
matScores = matScores, rowFreqs, colFreqs
return matScores, delCosts, insCosts, scale
def isCloseEnough(oldParameters, newParameters):
delCosts0, insCosts0, substitutionParameters0 = oldParameters
m0, rowFreqs0, colFreqs0 = substitutionParameters0
delCosts1, insCosts1, substitutionParameters1 = newParameters
m1, rowFreqs1, colFreqs1 = substitutionParameters1
return (delCosts0 == delCosts1 and insCosts0 == insCosts1 and
all(abs(i - j) < 2 for x, y in zip(m0, m1) for i, j in zip(x, y)))
### End of routines for codons & frameshifts
def writeGapCosts(opts, delCosts, insCosts, isLastFormat, outFile):
if opts.codon:
delOpen, delGrow, del1, del2 = delCosts
insOpen, insGrow, ins1, ins2 = insCosts
frameshiftCosts = del1, del2, ins1, ins2
frameshiftCosts = ",".join(map(str, frameshiftCosts))
else:
delInit, delGrow = delCosts
insInit, insGrow = insCosts
delOpen = delInit - delGrow
insOpen = insInit - insGrow
if isLastFormat:
print("#last -a", delOpen, file=outFile)
print("#last -A", insOpen, file=outFile)
print("#last -b", delGrow, file=outFile)
print("#last -B", insGrow, file=outFile)
if opts.codon:
print("#last -F", frameshiftCosts, file=outFile)
else:
print("# delExistCost:", delOpen, file=outFile)
print("# insExistCost:", insOpen, file=outFile)
print("# delExtendCost:", delGrow, file=outFile)
print("# insExtendCost:", insGrow, file=outFile)
if opts.codon:
print("# frameshiftCosts del-1,del-2,ins+1,ins+2:",
frameshiftCosts, file=outFile)
def probsFromFile(opts, lastalArgs, lines):
print("#", *lastalArgs)
print()
sys.stdout.flush()
matCounts, gapCounts = countsFromLastOutput(lines, opts)
if opts.codon:
gapProbs = frameshiftProbsFromCounts(gapCounts, opts)
matProbs = codonMatProbsFromCounts(matCounts, opts)
else:
gapProbs = gapProbsFromCounts(gapCounts, opts)
matProbs = matProbsFromCounts(matCounts, opts)
return matProbs, gapProbs
def tryToMakeChildProgramsFindable():
d = os.path.dirname(__file__)
e = os.path.join(d, os.pardir, "src")
# put them first, to avoid getting older versions of LAST:
os.environ["PATH"] = d + os.pathsep + e + os.pathsep + os.environ["PATH"]
def readLastalProgName(lastdbIndexName):
bitsPerInt = "32"
with open(lastdbIndexName + ".prj") as f:
for line in f:
if line.startswith("integersize="):
bitsPerInt = line.split("=")[1].strip()
return "lastal8" if bitsPerInt == "64" else "lastal"
def fixedLastalArgs(opts, lastalProgName):
x = [lastalProgName, "-j7"]
if opts.D: x.append("-D" + opts.D)
if opts.E: x.append("-E" + opts.E)
if opts.s: x.append("-s" + opts.s)
if opts.S: x.append("-S" + opts.S)
if opts.C: x.append("-C" + opts.C)
if opts.T: x.append("-T" + opts.T)
if opts.m: x.append("-m" + opts.m)
if opts.k: x.append("-k" + opts.k)
if opts.P: x.append("-P" + opts.P)
if opts.X: x.append("-X" + opts.X)
if opts.Q: x.append("-Q" + opts.Q)
if opts.verbose: x.append("-" + "v" * opts.verbose)
if opts.codon:
x.append("-K1")
return x
def process(args, inStream):
return subprocess.Popen(args, stdin=inStream, stdout=subprocess.PIPE,
universal_newlines=True)
def versionFromLastal():
args = ["lastal", "--version"]
proc = process(args, None)
return proc.stdout.read().split()[1]
def lastSplitProcess(opts, proc):
splitArgs = ["last-split", "-n", "-m0.01"] # xxx ???
proc = process(splitArgs, proc.stdout)
if opts.postmask:
maskArgs = ["last-postmask"]
proc = process(maskArgs, proc.stdout)
return proc
def doTraining(opts, args):
tryToMakeChildProgramsFindable()
lastalProgName = readLastalProgName(args[0])
lastalVersion = versionFromLastal()
print("# lastal version:", lastalVersion)
if opts.codon:
scaleIncrease = 1
gapRatiosFunc = frameshiftRatiosFromProbs
scoresAndScaleFunc = codonScoresAndScale
writeScoreMatrixFunc = writeCodonScoreMatrix
else:
scaleIncrease = 20 # while training, upscale the scores by this amount
gapRatiosFunc = gapRatiosFromProbs
scoresAndScaleFunc = scoresAndScale
writeScoreMatrixFunc = writeScoreMatrix
print("# maximum percent identity:", opts.pid)
lastalArgs = fixedLastalArgs(opts, lastalProgName)
if opts.r: lastalArgs.append("-r" + opts.r)
if opts.q: lastalArgs.append("-q" + opts.q)
if opts.p: lastalArgs.append("-p" + opts.p)
if opts.a: lastalArgs.append("-a" + opts.a)
if opts.b: lastalArgs.append("-b" + opts.b)
if opts.A: lastalArgs.append("-A" + opts.A)
if opts.B: lastalArgs.append("-B" + opts.B)
lastalArgs += args
proc = process(lastalArgs, None)
proc = lastSplitProcess(opts, proc)
if not opts.scale:
externalScale = scaleFromHeader(proc.stdout)
if opts.scale:
externalScale = opts.scale / math.log(2)
internalScale = externalScale * scaleIncrease
oldParameters = []
print("# scale of score parameters:", externalScale)
print("# scale used while training:", internalScale)
print()
if opts.codon:
matProbs, gapProbs = initialCodonProbs(opts)
else:
matProbs, gapProbs = probsFromFile(opts, lastalArgs, proc.stdout)
while True:
matchRatio, delRatios, insRatios = gapRatiosFunc(*gapProbs)
rowProbs = [sum(i) for i in matProbs]
colProbs = [sum(i) for i in zip(*matProbs)]
if opts.codon:
rowProbs = [freqText(i) for i in rowProbs]
colProbs = [freqText(i) for i in colProbs]
matParams = matchRatio, matProbs, rowProbs, colProbs
ss = scoresAndScaleFunc(internalScale, matParams, delRatios, insRatios)
matScores, delCosts, insCosts, scale = ss
writeGapCosts(opts, delCosts, insCosts, False, None)
print()
print("# score matrix "
"(query letters = columns, reference letters = rows):")
writeScoreMatrixFunc(sys.stdout, matScores, "# ")
print()
parameters = delCosts, insCosts, matScores
if opts.codon:
if any(isCloseEnough(i, parameters) for i in oldParameters):
break
else:
if parameters in oldParameters:
break
oldParameters.append(parameters)
lastalArgs = fixedLastalArgs(opts, lastalProgName)
lastalArgs.append("-t{0:.6}".format(scale))
lastalArgs.append("-p-")
lastalArgs += args
proc = process(lastalArgs, subprocess.PIPE)
writeGapCosts(opts, delCosts, insCosts, True, proc.stdin)
writeScoreMatrixFunc(proc.stdin, matScores, "")
proc.stdin.close()
if not opts.codon:
proc = lastSplitProcess(opts, proc)
matProbs, gapProbs = probsFromFile(opts, lastalArgs, proc.stdout)
ss = scoresAndScaleFunc(externalScale, matParams, delRatios, insRatios)
matScores, delCosts, insCosts, scale = ss
if opts.X: print("#last -X", opts.X)
if opts.Q: print("#last -Q", opts.Q)
print("#last -t{0:.6}".format(scale))
writeGapCosts(opts, delCosts, insCosts, True, None)
if opts.s: print("#last -s", opts.s)
if opts.S: print("#last -S", opts.S)
print("# score matrix "
"(query letters = columns, reference letters = rows):")
writeScoreMatrixFunc(sys.stdout, matScores, "")
def lastTrain(opts, args):
if opts.sample_number:
random.seed(math.pi)
refName = args[0]
queryFiles = args[1:]
try:
with tempfile.NamedTemporaryFile("w", delete=False) as f:
getSeqSample(opts, queryFiles, f)
doTraining(opts, [refName, f.name])
finally:
os.remove(f.name)
else:
doTraining(opts, args)
if __name__ == "__main__":
signal.signal(signal.SIGPIPE, signal.SIG_DFL) # avoid silly error message
usage = "%prog [options] lastdb-name sequence-file(s)"
description = "Try to find suitable score parameters for aligning the given sequences."
op = optparse.OptionParser(usage=usage, description=description)
op.add_option("-v", "--verbose", action="count",
help="show more details of intermediate steps")
og = optparse.OptionGroup(op, "Training options")
og.add_option("--revsym", action="store_true",
help="force reverse-complement symmetry")
og.add_option("--matsym", action="store_true",
help="force symmetric substitution matrix")
og.add_option("--gapsym", action="store_true",
help="force insertion/deletion symmetry")
og.add_option("--pid", type="float", default=100, help=
"skip alignments with > PID% identity (default: %default)")
og.add_option("--postmask", type="int", metavar="NUMBER", default=1, help=
"skip mostly-lowercase alignments (default=%default)")
og.add_option("--sample-number", type="int", metavar="N",
help="number of random sequence samples "
"(default: 20000 if --codon else 500)")
og.add_option("--sample-length", type="int", default=2000, metavar="L",
help="length of each sample (default: %default)")
og.add_option("--scale", type="float", metavar="S",
help="output scores in units of 1/S bits")
og.add_option("--codon", action="store_true",
help="DNA queries & protein reference, with frameshifts")
op.add_option_group(og)
og = optparse.OptionGroup(op, "Initial parameter options")
og.add_option("-r", metavar="SCORE",
help="match score (default: 6 if Q>=1, else 5)")
og.add_option("-q", metavar="COST",
help="mismatch cost (default: 18 if Q>=1, else 5)")
og.add_option("-p", metavar="NAME", help="match/mismatch score matrix")
og.add_option("-a", metavar="COST",
help="gap existence cost (default: 21 if Q>=1, else 15)")
og.add_option("-b", metavar="COST",
help="gap extension cost (default: 9 if Q>=1, else 3)")
og.add_option("-A", metavar="COST", help="insertion existence cost")
og.add_option("-B", metavar="COST", help="insertion extension cost")
og.add_option("-F", metavar="LIST", help="frameshift probabilities: "
"del-1,del-2,ins+1,ins+2 (default: 1-b,1-b,1-B,1-B)")
op.add_option_group(og)
og = optparse.OptionGroup(op, "Alignment options")
og.add_option("-D", metavar="LENGTH",
help="query letters per random alignment (default: 1e6)")
og.add_option("-E", metavar="EG2",
help="maximum expected alignments per square giga")
og.add_option("-s", metavar="STRAND", help=
"0=reverse, 1=forward, 2=both (default: 2 if DNA, else 1)")
og.add_option("-S", metavar="NUMBER", default="1", help=
"score matrix applies to forward strand of: " +
"0=reference, 1=query (default: %default)")
og.add_option("-C", metavar="COUNT", help=
"omit gapless alignments in COUNT others with > score-per-length")
og.add_option("-T", metavar="NUMBER",
help="type of alignment: 0=local, 1=overlap (default: 0)")
og.add_option("-m", metavar="COUNT", help=
"maximum initial matches per query position (default: 10)")
og.add_option("-k", metavar="STEP", help="use initial matches starting at "
"every STEP-th position in each query (default: 1)")
og.add_option("-P", metavar="THREADS",
help="number of parallel threads")
og.add_option("-X", metavar="NUMBER", help="N/X is ambiguous in: "
"0=neither sequence, 1=reference, 2=query, 3=both "
"(default=0)")
og.add_option("-Q", metavar="NAME",
help="input format: fastx, sanger (default=fasta)")
op.add_option_group(og)
(opts, args) = op.parse_args()
if len(args) < 1:
op.error("I need a lastdb index and query sequences")
if opts.sample_number is None:
opts.sample_number = 20000 if opts.codon else 500
if not opts.sample_number and (len(args) < 2 or "-" in args):
op.error("sorry, can't use stdin when --sample-number=0")
if opts.codon:
if not opts.scale: opts.scale = 3
if not opts.r: opts.r = "0.4"
if not opts.a: opts.a = "0.02"
if not opts.b: opts.b = "0.5"
if not opts.A: opts.A = opts.a
if not opts.B: opts.B = opts.b
opts.S = None
if not opts.p and (not opts.Q or opts.Q in ("0", "fastx", "keep")):
if not opts.r: opts.r = "5"
if not opts.q: opts.q = "5"
if not opts.a: opts.a = "15"
if not opts.b: opts.b = "3"
try: lastTrain(opts, args)
except KeyboardInterrupt: pass # avoid silly error message
except Exception as e:
prog = os.path.basename(sys.argv[0])
sys.exit(prog + ": error: " + str(e))
|