File: GappedXdropAlignerDna.cc

package info (click to toggle)
last-align 1651-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,688 kB
  • sloc: cpp: 44,419; python: 5,217; ansic: 1,938; sh: 710; makefile: 457
file content (271 lines) | stat: -rw-r--r-- 8,406 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Author: Martin C. Frith 2019
// SPDX-License-Identifier: GPL-3.0-or-later

#include "GappedXdropAligner.hh"
#include "GappedXdropAlignerInl.hh"

//#include <iostream>  // for debugging

namespace cbrc {

const int seqLoadLen = simdBytes;

const int delimiter = 4;

int GappedXdropAligner::alignDna(BigPtr seq1,
				 const uchar *seq2,
				 bool isForward,
				 const ScoreMatrixRow *scorer,
				 int delOpenCost,
				 int delGrowCost,
				 int insOpenCost,
				 int insGrowCost,
				 int maxScoreDrop,
				 int maxMatchScore,
				 const uchar *toUnmasked) {
  int badScoreDrop = maxScoreDrop + 1;

  delGrowCost = std::min(delGrowCost, badScoreDrop);
  delOpenCost = std::min(delOpenCost, badScoreDrop - delGrowCost);

  insGrowCost = std::min(insGrowCost, badScoreDrop);
  insOpenCost = std::min(insOpenCost, badScoreDrop - insGrowCost);

  const SimdUint1 mNegInf = simdOnes1();
  const SimdUint1 mDelOpenCost = simdFill1(delOpenCost);
  const SimdUint1 mDelGrowCost = simdFill1(delGrowCost);
  const SimdUint1 mInsOpenCost = simdFill1(insOpenCost);
  const SimdUint1 mInsGrowCost = simdFill1(insGrowCost);
  const int seqIncrement = isForward ? 1 : -1;
  const int scoreOffset = maxMatchScore * 2;

  const SimdUint1 scorer4x4 =
    simdSet1(
		 scorer[3][3], scorer[3][2], scorer[3][1], scorer[3][0],
		 scorer[2][3], scorer[2][2], scorer[2][1], scorer[2][0],
		 scorer[1][3], scorer[1][2], scorer[1][1], scorer[1][0],
		 scorer[0][3], scorer[0][2], scorer[0][1], scorer[0][0],
		 scorer[3][3], scorer[3][2], scorer[3][1], scorer[3][0],
		 scorer[2][3], scorer[2][2], scorer[2][1], scorer[2][0],
		 scorer[1][3], scorer[1][2], scorer[1][1], scorer[1][0],
		 scorer[0][3], scorer[0][2], scorer[0][1], scorer[0][0]);

  int numCells = 1;
  size_t seq1end = 1;
  size_t diagPos = xdropPadLen - 1;
  size_t horiPos = xdropPadLen * 2 - 1;
  size_t thisPos = xdropPadLen * 2;

  int bestScore = 0;
  SimdUint1 mBestScore = mNegInf;
  SimdUint1 mBadScore = simdFill1(scoreOffset + badScoreDrop);
  SimdUint1 mScoreRise1 = simdZero1();
  SimdUint1 mScoreRise2 = simdZero1();

  initTiny(scoreOffset);
  seq1queue.clear();
  seq2queue.clear();

  bool isDna = (toUnmasked[*seq1] < 4 && toUnmasked[*seq2] < 4);

  for (int i = 0; i < seqLoadLen; ++i) {
    uchar x = toUnmasked[*seq1];
    seq1 += seqIncrement * (x != delimiter);
    seq1queue.push(x, i);
    seq2queue.push(toUnmasked[*seq2], i);
  }

  seq2 += seqIncrement;

  size_t antidiagonal;
  for (antidiagonal = 2; /* noop */; ++antidiagonal) {
    int n = numCells - 1;
    const uchar *s1 = &seq1queue.fromEnd(n + seqLoadLen);
    const uchar *s2 = seq2queue.begin();

    initAntidiagonalTiny(antidiagonal, seq1end, thisPos, numCells);
    thisPos += xdropPadLen;
    TinyScore *x0 = &xTinyScores[thisPos];
    TinyScore *y0 = &yTinyScores[thisPos];
    TinyScore *z0 = &zTinyScores[thisPos];
    const TinyScore *y1 = &yTinyScores[horiPos];
    const TinyScore *z1 = &zTinyScores[horiPos + 1];
    const TinyScore *x2 = &xTinyScores[diagPos];

    const SimdUint1 mScoreRise12 = simdAdd1(mScoreRise1, mScoreRise2);
    const SimdUint1 mDelGrowCost1 = simdAdd1(mDelGrowCost, mScoreRise1);
    const SimdUint1 mInsGrowCost1 = simdAdd1(mInsGrowCost, mScoreRise1);

    if (isDna) {
      for (int i = 0; i < numCells; i += simdBytes) {
	SimdUint1 fwd1 = simdLoad1(s1+i);
	SimdUint1 rev2 = simdLoad1(s2+i);
	SimdUint1 j = simdOr1(simdQuadruple1(fwd1), rev2);
	SimdUint1 s = simdChoose1(scorer4x4, j);
	SimdUint1 x = simdAdds1(simdLoad1(x2+i), mScoreRise12);
	SimdUint1 y = simdAdds1(simdLoad1(y1+i), mDelGrowCost1);
	SimdUint1 z = simdAdds1(simdLoad1(z1+i), mInsGrowCost1);
	SimdUint1 b = simdMin1(simdMin1(x, y), z);
	SimdUint1 isDrop = simdGe1(b, mBadScore);
	mBestScore = simdMin1(b, mBestScore);
	simdStore1(x0+i, simdOr1(simdSub1(b, s), isDrop));
	simdStore1(y0+i, simdMin1(simdAdds1(b, mDelOpenCost), y));
	simdStore1(z0+i, simdMin1(simdAdds1(b, mInsOpenCost), z));
      }
    } else {
      bool isDelimiter1 = (s1[n] == delimiter);
      bool isDelimiter2 = (s2[0] == delimiter);
      if (isDelimiter1 || isDelimiter2) {
	badScoreDrop = std::min(badScoreDrop, n * maxMatchScore);
	mBadScore = simdFill1(scoreOffset + badScoreDrop);
      }

      for (int i = 0; i < numCells; i += simdBytes) {
	SimdUint1 s = simdSet1(
			     scorer[s1[31]][s2[31]],
			     scorer[s1[30]][s2[30]],
			     scorer[s1[29]][s2[29]],
			     scorer[s1[28]][s2[28]],
			     scorer[s1[27]][s2[27]],
			     scorer[s1[26]][s2[26]],
			     scorer[s1[25]][s2[25]],
			     scorer[s1[24]][s2[24]],
			     scorer[s1[23]][s2[23]],
			     scorer[s1[22]][s2[22]],
			     scorer[s1[21]][s2[21]],
			     scorer[s1[20]][s2[20]],
			     scorer[s1[19]][s2[19]],
			     scorer[s1[18]][s2[18]],
			     scorer[s1[17]][s2[17]],
			     scorer[s1[16]][s2[16]],
			     scorer[s1[15]][s2[15]],
			     scorer[s1[14]][s2[14]],
			     scorer[s1[13]][s2[13]],
			     scorer[s1[12]][s2[12]],
			     scorer[s1[11]][s2[11]],
			     scorer[s1[10]][s2[10]],
			     scorer[s1[9]][s2[9]],
			     scorer[s1[8]][s2[8]],
			     scorer[s1[7]][s2[7]],
			     scorer[s1[6]][s2[6]],
			     scorer[s1[5]][s2[5]],
			     scorer[s1[4]][s2[4]],
			     scorer[s1[3]][s2[3]],
			     scorer[s1[2]][s2[2]],
			     scorer[s1[1]][s2[1]],
			     scorer[s1[0]][s2[0]]);

	SimdUint1 x = simdAdds1(simdLoad1(x2+i), mScoreRise12);
	SimdUint1 y = simdAdds1(simdLoad1(y1+i), mDelGrowCost1);
	SimdUint1 z = simdAdds1(simdLoad1(z1+i), mInsGrowCost1);
	SimdUint1 b = simdMin1(simdMin1(x, y), z);
	SimdUint1 isDrop = simdGe1(b, mBadScore);
	mBestScore = simdMin1(b, mBestScore);
	simdStore1(x0+i, simdOr1(simdSub1(b, s), isDrop));
	simdStore1(y0+i, simdMin1(simdAdds1(b, mDelOpenCost), y));
	simdStore1(z0+i, simdMin1(simdAdds1(b, mInsOpenCost), z));
	s1 += simdBytes;
	s2 += simdBytes;
      }
      if (isDelimiter2) x0[0] = droppedTinyScore;
      if (isDelimiter1) x0[n] = droppedTinyScore;  // maybe n=0
    }

    mScoreRise2 = mScoreRise1;
    mScoreRise1 = simdZero1();
    int newBestScore = simdHorizontalMin1(mBestScore);
    int rise = 0;
    if (newBestScore < scoreOffset) {
      rise = scoreOffset - newBestScore;
      bestScore += rise;
      bestAntidiagonal = antidiagonal;
      mBestScore = mNegInf;
      mScoreRise1 = simdFill1(rise);
    }
    scoreRises[antidiagonal] = rise;

    diagPos = horiPos;
    horiPos = thisPos - 1;
    thisPos += numCells;

    if (x0[n] != droppedTinyScore) {
      ++numCells;
      ++seq1end;
      uchar x = toUnmasked[*seq1];
      seq1 += seqIncrement * (x != delimiter);
      seq1queue.push(x, n + seqLoadLen);
      uchar z = seq1queue.fromEnd(seqLoadLen);
      if (z >= 4) {
	isDna = false;
      }
    }

    if (x0[0] != droppedTinyScore) {
      uchar y = toUnmasked[*seq2];
      seq2queue.push(y, n + seqLoadLen);
      seq2 += seqIncrement;
      if (y >= 4) {
	isDna = false;
      }
    } else {
      --numCells;
      if (numCells == 0) break;
      ++diagPos;
      ++horiPos;
    }
  }

  bestAntidiagonal -= 2;
  calcBestSeq1positionTiny(scoreOffset);
  numOfAntidiagonals = antidiagonal - 1;
  return bestScore;
}

bool GappedXdropAligner::getNextChunkDna(size_t &end1,
					 size_t &end2,
					 size_t &length,
					 int delOpenCost,
					 int delGrowCost,
					 int insOpenCost,
					 int insGrowCost) {
  if (bestAntidiagonal == 0) return false;

  end1 = bestSeq1position;
  end2 = bestAntidiagonal - bestSeq1position;

  const size_t *origins = &scoreEndsAndOrigins[1];
  size_t h, d;
  int x, y, z;

  do {
    bestAntidiagonal -= 2;
    bestSeq1position -= 1;
    h = origins[bestAntidiagonal * 2 + 2] + bestSeq1position - 1;
    d = origins[bestAntidiagonal * 2] + bestSeq1position - 1;
    x = xTinyScores[d] + scoreRises[bestAntidiagonal];
    y = yTinyScores[h] + delGrowCost;
    z = zTinyScores[h + 1] + insGrowCost;
  } while (x <= y && x <= z && bestAntidiagonal > 0);

  length = end1 - bestSeq1position;
  if (bestAntidiagonal == 0) return true;

  while (1) {
    bool isDel = (y <= z);
    bestAntidiagonal -= 1;
    bestSeq1position -= isDel;
    h = d - isDel;
    d = origins[bestAntidiagonal * 2] + bestSeq1position - 1;
    x = xTinyScores[d] + scoreRises[bestAntidiagonal];
    y = yTinyScores[h] + delGrowCost;
    z = zTinyScores[h + 1] + insGrowCost;
    if (isDel) {
      y -= delOpenCost;
    } else {
      z -= insOpenCost;
    }
    if (x <= y && x <= z) return true;
  }
}

}