File: last-pair-probs.py

package info (click to toggle)
last-align 199-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 1,840 kB
  • sloc: cpp: 19,270; python: 1,561; ansic: 639; makefile: 132; sh: 79
file content (376 lines) | stat: -rwxr-xr-x 14,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#! /usr/bin/env python

# Copyright 2011 Martin C. Frith

# This script reads alignments of DNA reads to a genome, and estimates
# the probability that each alignment represents the genomic source of
# the read.  It assumes that the reads come in pairs, where each pair
# is from either end of a DNA fragment.

# A write-up of the method is available from the author (and should be
# published somewhere).

# Seems to work with Python 2.x, x>=4.

# The --rna option makes it assume that the genomic fragment lengths
# follow a log-normal distribution (instead of a normal distribution).
# In one test with human RNA, log-normal was a remarkably good fit,
# but not perfect.  The true distribution looked like a mixture of 2
# log-normals: a dominant one for shorter introns, and a minor one for
# huge introns.  Thus, our use of a single log-normal fails to model
# rare, huge introns.  To compensate for that, the default value of
# --disjoint is increased when --rna is used.

# (Should we try to estimate the prior probability of disjoint mapping
# from the data?  But maybe ignore low-scoring alignments for that?
# Estimate disjoint maps to opposite strands of same chromosome = maps
# to same strand of same chromosome?)

import itertools, math, operator, optparse, os, signal, sys

def logSumExp(numbers):
    """Adds numbers, in log space, to avoid overflow."""
    n = list(numbers)
    if not n: return -1e99  # should be -inf
    m = max(n)
    s = sum(math.exp(i - m) for i in n)  # fsum is only Python >= 2.6.
    return math.log(s) + m

def warn(*things):
    prog = os.path.basename(sys.argv[0])
    text = " ".join(map(str, things))
    sys.stderr.write(prog + ": " + text + "\n")

# Kludge: using "~" to indicate "finished".

def safeNext(groupedby):
    try:
        k, g = groupedby.next()
        return k, list(g)
    except StopIteration:
        return "~", []

def joinby(iterable1, iterable2, keyfunc):
    """Yields groups from iterable1 and iterable2 that share the same key."""
    groups1 = itertools.groupby(iterable1, keyfunc)
    groups2 = itertools.groupby(iterable2, keyfunc)
    k1, v1 = safeNext(groups1)
    k2, v2 = safeNext(groups2)
    while k1 != "~" or k2 != "~":
        if k1 < k2:
            yield v1, []
            k1, v1 = safeNext(groups1)
        elif k1 > k2:
            yield [], v2
            k2, v2 = safeNext(groups2)
        else:
            yield v1, v2
            k1, v1 = safeNext(groups1)
            k2, v2 = safeNext(groups2)

class Alignment:
    def __init__(self, pairName, chromName, strand, endpoint, chromSize,
                 score, lines):
        self.pairName = pairName
        self.chromName = chromName
        self.strand = strand
        self.endpoint = endpoint
        self.chromSize = chromSize
        self.score = score
        self.lines = lines

class AlignmentParameters:
    """Parses the t (temperature) and e (minimum score) parameters."""

    def __init__(self):  # dummy values:
        self.t = -1
        self.e = -1

    def update(self, line):
        for i in line.split():
            if self.t == -1 and i.startswith("t="):
                self.t = float(i[2:])
                if self.t <= 0: raise Exception("t must be positive")
            if self.e == -1 and i.startswith("e="):
                self.e = float(i[2:])
                if self.e <= 0: raise Exception("e must be positive")

    def validate(self):
        if self.t == -1: raise Exception("I need a header line with t=")
        if self.e == -1: raise Exception("I need a header line with e=")

def printAlignmentWithMismapProb(lines, prob):
    p = "%.3g" % prob
    if len(lines) == 1:  # we have tabular format
        print lines[0].rstrip() + "\t" + p
    else:  # we have MAF format
        print lines[0].rstrip() + " mismap=" + p
        for i in lines[1:]: print i,

def fragmentLength(alignment1, alignment2):
    length = alignment1.endpoint + alignment2.endpoint
    if length > alignment1.chromSize: length -= alignment1.chromSize
    return length

def conjointScores(aln1, alns2, opts):  # maybe slow
    for i in alns2:
        if i.chromName != aln1.chromName or i.strand == aln1.strand: continue
        length = fragmentLength(aln1, i)
        if length <= 0: continue
        if opts.rna:  # use a log-normal distribution
            loglen = math.log(length)
            yield i.score + opts.inner * (loglen - opts.fraglen) ** 2 - loglen
        else:         # use a normal distribution
            yield i.score + opts.inner * (length - opts.fraglen) ** 2

def printAlignmentsForOneRead(alignments1, alignments2, opts, maxMissingScore):
    if alignments2:
        x = opts.disjointScore + logSumExp(i.score for i in alignments2)
        for i in alignments1:
            y = opts.outer + logSumExp(conjointScores(i, alignments2, opts))
            i.z = i.score + logSumExp((x, y))
        w = maxMissingScore + max(i.score for i in alignments2)
    else:
        for i in alignments1:
            i.z = i.score + opts.disjointScore
        w = maxMissingScore

    z = logSumExp(i.z for i in alignments1)
    zw = logSumExp((z, w))

    for i in alignments1:
        prob = 1 - math.exp(i.z - zw)
        if prob <= opts.mismap: printAlignmentWithMismapProb(i.lines, prob)

def measurablePairs(alignments1, alignments2):  # maybe slow
    """Yields alignment pairs on opposite strands of the same chromosome."""
    for i in alignments1:
        for j in alignments2:
            if i.chromName == j.chromName and i.strand != j.strand:
                yield i, j

def unambiguousFragmentLength(alignments1, alignments2):
    """Returns the fragment length implied by alignments of a pair of reads."""
    old = None
    for i, j in measurablePairs(alignments1, alignments2):
        new = fragmentLength(i, j)
        if old is None: old = new
        elif new != old: return None  # the fragment length is ambiguous
    return old

def unambiguousFragmentLengths(queryPairs):
    for i in queryPairs:
        length = unambiguousFragmentLength(*i)
        if length is not None: yield length

def checkChromSize(chromSizes, rName, rSize):
    if rName in chromSizes and chromSizes[rName] != rSize:
        raise Exception("inconsistent lengths for: " + rName)
    chromSizes[rName] = rSize

def parseMafScore(aLine):
    for i in aLine.split():
        if i.startswith("score="): return i[6:]
    raise Exception("missing score")

def parseMaf(lines):
    aLines = [i for i in lines if i[0] == "a"]
    sLines = [i for i in lines if i[0] == "s"]
    score = parseMafScore(aLines[0])
    rWords = sLines[0].split()[1:6]
    qWords = sLines[1].split()[1:6]
    return score, rWords, qWords, lines

def parseTab(line):
    words = line.split()
    score = words[0]
    rWords = words[1:6]
    qWords = words[6:11]
    return score, rWords, qWords, [line]

def readAlignmentData(lines, params):
    """Yields alignment data from MAF or tabular format, and updates params."""
    mafLines = []
    for line in lines:
        if line[0] == "#":
            params.update(line)
        elif line[0].isdigit():
            yield parseTab(line)
        elif line.isspace():
            if mafLines:
                mafLines.append(line)
                yield parseMaf(mafLines)
                mafLines = []
        else:
            mafLines.append(line)
    if mafLines:
        yield parseMaf(mafLines)

def cunningCoordinate(strand, rStart, rSpan, rSize, isCircular):
    """Returns a coordinate, that allows fast calculation of frag lengths."""
    if strand == "+": return -rStart
    elif isCircular:  return rStart + rSpan + rSize
    else:             return rStart + rSpan

def infoFromAlignmentWords(words):
    seqName, alnStart, alnSize, strand, seqSize = words
    return seqName, int(alnStart), int(alnSize), strand, int(seqSize)

def readAlignments(lines, chromSizes, params, circularChroms):
    """Yields alignments, checks their order, updates chromSizes and params."""
    oldName = ""
    for i in readAlignmentData(lines, params):
        score, rWords, qWords, text = i
        rName, rStart, rSpan, rStrand, rSize = infoFromAlignmentWords(rWords)
        qName, qStart, qSpan, qStrand, qSize = infoFromAlignmentWords(qWords)
        index = qName.rfind("/")
        if index < 0: pairName = qName
        else:         pairName = qName[:index+1]
        if pairName < oldName:
            raise Exception("alignments not sorted properly")
        oldName = pairName
        isCircular = rName in circularChroms or "." in circularChroms
        c = cunningCoordinate(qStrand, rStart, rSpan, rSize, isCircular)
        checkChromSize(chromSizes, rName, rSize)  # needed in 1st pass
        scaledScore = float(score) / params.t  # needed in 2nd pass
        yield Alignment(pairName, rName, qStrand, c, rSize, scaledScore, text)

def estimateFragmentLengthDistribution(lengths, opts):
    if not lengths:
        raise Exception("can't estimate fragment length distribution")

    # Define quartiles in the most naive way possible:
    lengths.sort()
    sampleSize = len(lengths)
    quartile1 = lengths[sampleSize // 4]
    quartile2 = lengths[sampleSize // 2]
    quartile3 = lengths[sampleSize * 3 // 4]

    warn("fragment length sample size:", sampleSize)
    warn("fragment length quartiles:", quartile1, quartile2, quartile3)

    if opts.fraglen is None:
        if opts.rna: opts.fraglen = math.log(quartile2)
        else:        opts.fraglen = quartile2
        warn("estimated mean fragment length:", opts.fraglen)

    if opts.sdev is None:
        if opts.rna: iqr = math.log(quartile3) - math.log(quartile1)
        else:        iqr = quartile3 - quartile1
        opts.sdev = iqr / 1.35  # Normal Distribution
        warn("estimated standard deviation:", "%g" % opts.sdev)

    if quartile1 <= 0:
        raise Exception("too many fragment lengths <= 0")

def safeLog(x):
    if x == 0: return -1e99
    else:      return math.log(x)

def calculateScorePieces(opts, params1, params2):
    if opts.sdev == 0:
        if opts.rna: opts.outer = opts.fraglen
        else:        opts.outer = 0
        opts.inner = -1e99
    else:  # parameters for a Normal Distribution (of fragment lengths):
        opts.outer = -math.log(opts.sdev * math.sqrt(2 * math.pi))
        opts.inner = -1.0 / (2 * opts.sdev ** 2)

    opts.outer += safeLog(1 - opts.disjoint)

    # Multiply genome size by 2, because it has 2 strands:
    opts.disjointScore = safeLog(opts.disjoint) - math.log(opts.genome * 2)
    #opts.disjointScore = math.log(opts.disjoint / (opts.genome * 2.0))

    # Max possible influence of an alignment just below the score threshold:
    maxLogPrior = opts.outer
    if opts.rna: maxLogPrior += opts.sdev ** 2 / 2 - opts.fraglen
    opts.maxMissingScore1 = (params1.e - 1) / params1.t + maxLogPrior
    opts.maxMissingScore2 = (params2.e - 1) / params2.t + maxLogPrior

def lastPairProbs(opts, args):
    fileName1, fileName2 = args
    params1 = AlignmentParameters()
    params2 = AlignmentParameters()
    chromSizes = {}

    in1 = open(fileName1)
    in2 = open(fileName2)

    alns1 = readAlignments(in1, chromSizes, params1, opts.circular)
    alns2 = readAlignments(in2, chromSizes, params2, opts.circular)

    queryPairs = joinby(alns1, alns2, operator.attrgetter("pairName"))
    lengths = list(unambiguousFragmentLengths(queryPairs))

    in1.close()
    in2.close()

    params1.validate()
    params2.validate()

    if opts.fraglen is None or opts.sdev is None:
        estimateFragmentLengthDistribution(lengths, opts)
    if opts.sdev < 0: raise Exception("standard deviation < 0")

    if opts.genome is None:
        opts.genome = sum(chromSizes.values())
        warn("genome size:", opts.genome)
    if opts.genome <= 0: raise Exception("genome size <= 0")

    calculateScorePieces(opts, params1, params2)

    in1 = open(fileName1)
    in2 = open(fileName2)

    alns1 = readAlignments(in1, chromSizes, params1, opts.circular)
    alns2 = readAlignments(in2, chromSizes, params2, opts.circular)

    queryPairs = joinby(alns1, alns2, operator.attrgetter("pairName"))

    for i, j in queryPairs:
        printAlignmentsForOneRead(i, j, opts, opts.maxMissingScore1)
        printAlignmentsForOneRead(j, i, opts, opts.maxMissingScore2)

    in1.close()
    in2.close()

if __name__ == "__main__":
    signal.signal(signal.SIGPIPE, signal.SIG_DFL)  # avoid silly error message

    usage = """
  %prog --help
  %prog [options] alignments1 alignments2"""

    description = "Read alignments of paired DNA reads to a genome, and estimate the probability that each alignment represents the genomic source of the read."

    op = optparse.OptionParser(usage=usage, description=description)
    op.add_option("-r", "--rna", action="store_true", help=
                  "specifies that the reads are from potentially-spliced RNA")
    op.add_option("-m", "--mismap", type="float", default=0.01, metavar="M",
                  help="don't write alignment pairs with mismap probability > M (default: %default)")
    op.add_option("-f", "--fraglen", type="float", metavar="BP",
                  help="mean fragment length in bp")
    op.add_option("-s", "--sdev", type="float", metavar="BP",
                  help="standard deviation of fragment length")
    op.add_option("-g", "--genome", type="float", metavar="BP",
                  help="haploid genome size in bp")
    op.add_option("-d", "--disjoint", type="float",
                  metavar="PROB", help=
                  "prior probability of disjoint mapping (default: 0.02 if -r, else 0.01)")
    op.add_option("-c", "--circular", action="append", metavar="CHROM",
                  help="specifies that chromosome CHROM is circular (default: chrM)")
    (opts, args) = op.parse_args()
    if opts.disjoint is None:
        if opts.rna: opts.disjoint = 0.02
        else:        opts.disjoint = 0.01
    if opts.disjoint < 0: op.error("option -d: should be >= 0")
    if opts.disjoint > 1: op.error("option -d: should be <= 1")
    if len(args) != 2: op.error("please give me two file names")
    if opts.circular is None: opts.circular = ["chrM"]

    try: lastPairProbs(opts, args)
    except KeyboardInterrupt: pass  # avoid silly error message
    except Exception, e:
        warn("error:", e)
        sys.exit(1)