1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
# /=====================================================================\ #
# | LaTeXML::MathGrammar | #
# | LaTeXML's Math Grammar for postprocessing | #
# |=====================================================================| #
# | Part of LaTeXML: | #
# | Public domain software, produced as part of work done by the | #
# | United States Government & not subject to copyright in the US. | #
# |---------------------------------------------------------------------| #
# | Bruce Miller <bruce.miller@nist.gov> #_# | #
# | http://dlmf.nist.gov/LaTeXML/ (o o) | #
# \=========================================================ooo==U==ooo=/ #
# ================================================================================
# LaTeXML's MathGrammar.
# To compile :
# perl -MParse::RecDescent - MathGrammar LaTeXML::MathGrammar
# ================================================================================
# Startup actions: import the constructors
{ BEGIN{ use LaTeXML::MathParser qw(:constructors);
#### $::RD_TRACE=1;
}}
# Rules section
# ========================================
# Naming Conventions:
# UPPERCASE : is for terminals, ie. classes of TeX tokens.
# Initial Cap : for non-terminal rules that can possibly be invoked externally.
# Initial lowercase : internal rules.
# ========================================
# For internal rules
# moreFoos[$foo] : Looks for more Foo's w/appropriate punctuation or operators,
# whatever is appropriate, and combines it with whatever was passed in
# as pattern arg. Typically, the last clause would be simply
# | { $arg[0]; }
# to return $foo without having found any more foo's.
# In such a case, it appears to be advantageous to have the first clause be
# : /^\Z/ { $arg[0]; }
# which will return immediately if there is no additional input.
# addFoo[$bar] : Check for a following Foo and add it, as appropriate to
# the $bar.
# ========================================
# Note that Parse:RecDescent does NOT backtrack within a rule:
# If a given production succeeds, the rule succeeds, but even if the ultimate
# parse fails, the parser will NOT go back and try another production within
# that same rule!!! Of course, if a production fails, it goes on to the next,
# and if that rule fails, etc...
#
# For example ||a|-|b|| won't work (in spite of various attempts to control it)
# After seeing the initial || and attempting to parse an Expression, it gets
# a * abs( - abs(b))
# without anything to match the initial ||; and it will NOT backtrack to try
# a shorter Expression!
#
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Top Level expressions; Just about anything?
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Note in particular, that many inline formula contain `half' a formula,
# with the lead-in text effectively being the LHS. eg. function $=foo$;
# similarly you can end up with a missing RHS, $x=$ even.
Start : Anything /^\Z/ { $item[1]; }
#======================================================================
Anything : <rulevar: local $MaxAbsDepth = $LaTeXML::MathParser::MAX_ABS_DEPTH>
Anything : AnythingAny /^\Z/ { $item[1]; }
#======================================================================
AnythingAny :
Formulae
| OPEN Formulae CLOSE { Fence($item[1],$item[2],$item[3]); }
| modifierFormulae
| OPEN modifierFormula CLOSE { Fence($item[1],$item[2],$item[3]); }
| MODIFIER
| MODIFIEROP Expression { Apply($item[1],Absent(),$item[2]);}
| METARELOP Formula { Apply($item[1],Absent(),$item[2]); }
| AnyOp (PUNCT(?) AnyOp {[$item[1]->[0]||InvisibleComma(), $item[2]]})(s)
{ NewList($item[1],map(@$_,@{$item[2]})); }
| FLOATSUPERSCRIPT POSTSUBSCRIPT { NewScript(NewScript(Absent(),$item[1]),$item[2]); }
| FLOATSUBSCRIPT POSTSUPERSCRIPT { NewScript(NewScript(Absent(),$item[1]),$item[2]); }
| FLOATSUPERSCRIPT { NewScript(Absent(),$item[1]); }
| FLOATSUBSCRIPT { NewScript(Absent(),$item[1]); }
| AnyOp Expression { Apply($item[1],Absent(),$item[2]);}
# a top level rule for sub and superscripts that can accept all sorts of junk.
Subscript : <rulevar: local $MaxAbsDepth = $LaTeXML::MathParser::MAX_ABS_DEPTH>
Subscript :
aSubscript (PUNCT(?) aSubscript {[$item[1]->[0] || InvisibleComma(),$item[2]]; })(s?) endPunct(?)
{ NewList($item[1],map(@$_,@{$item[2]}),$item[3]->[0]||Absent()); }
Superscript : <rulevar: local $MaxAbsDepth = $LaTeXML::MathParser::MAX_ABS_DEPTH>
Superscript :
aSuperscript (PUNCT(?) aSuperscript {[$item[1]->[0] || InvisibleComma(),$item[2]]; })(s?) endPunct(?)
{ NewList($item[1],map(@$_,@{$item[2]}),$item[3]->[0]||Absent()); }
aSubscript :
Formulae
| AnyOp Expression { Apply($item[1],Absent(),$item[2]);}
| AnyOp
| OPEN aSubscript CLOSE { Fence($item[1],$item[2],$item[3]); }
aSuperscript :
supops
| Formulae
| AnyOp Expression { Apply($item[1],Absent(),$item[2]);}
| AnyOp
| OPEN aSuperscript CLOSE { Fence($item[1],$item[2],$item[3]); }
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Formulae (relations or grouping of expressions or relations)
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# This maze attempts to recognize the various meaningful(?) alternations of
# Expression(s) separated by punctuation, relational operators or metarelational
# operators [Think of $a=b=c$ vs $a=b, c=d$ vs. $a=b,c,d$ .. ]
# and group them into Formulae (collections of relations), including relations
# which have punctuated collections of Expression(s) on either the LHS or RHS,
# as well as `multirelation' like a = b = c, or simply punctuated collections of
# Expression(s)
Formulae : Formula moreFormulae[$item[1]]
# moreFormulae[$formula]; Got a Formula, what can follow?
moreFormulae :
/^\Z/ { $arg[0];} # short circuit!
| (endPunct Formula { [$item[1],$item[2]]; })(s)
{ NewFormulae($arg[0],map(@$_,@{$item[1]})); }
| metarelopFormula(s) { NewFormula($arg[0],map(@$_,@{$item[1]})); }
| { $arg[0]; }
# Punctuation that ends a formula
endPunct : PUNCT | PERIOD
Formula : Expression extendFormula[$item[1]]
# extendFormula[$expression] ; expression might be followed by punct Expression...
# or relop Expression... or arrow Expression or nothing.
extendFormula :
/^\Z/ { $arg[0];} # short circuit!
| punctExpr(s) maybeRHS[$arg[0],map(@$_,@{$item[1]})]
| relop Expression moreRHS[$arg[0],$item[1],$item[2]]
| relop /^\Z/ { NewFormula($arg[0],$item[1], Absent()); }
| { $arg[0]; }
# maybeRHS[$expr,(punct,$expr)*];
# Could have RELOP Expression (which means the (collected LHS) relation RHS)
# or done (just collection)
maybeRHS :
/^\Z/ { NewList(@arg); }
| relopExpr(s) { NewFormula(NewList(@arg),map(@$_,@{$item[1]})); }
| { NewList(@arg); }
# --- either line could be followed by (>0)
# For the latter, does a,b,c (<0) mean c<0 or all of them are <0 ????
# moreRHS[$expr,$relop,$expr]; Could have more (relop Expression)
# or (punct Expression)*
moreRHS :
/^\Z/ { NewFormula($arg[0],$arg[1],$arg[2]); } # short circuit!
| PUNCT Expression maybeColRHS[@arg,$item[1],$item[2]]
| relopExpr(s?) { NewFormula($arg[0],$arg[1],$arg[2],
map(@$_,@{$item[1]})); }
# --- 1st line could be preceded by (>0) IF it ends up end of formula
# --- 2nd line could be followed by (>0)
# maybeColRHS[$expr,$relop,$expr,(punct, $expr)*];
# Could be done, get punct (collection) or rel Expression (another formula)
maybeColRHS :
/^\Z/ { NewFormula($arg[0],$arg[1],NewList(@arg[2..$#arg])); }
| relop Expression moreRHS[$arg[$#arg],$item[1],$item[2]]
{ NewFormulae(NewFormula($arg[0],$arg[1],
NewList(@arg[2..$#arg-2])),$arg[$#arg-1],$item[3]); }
| PUNCT Expression maybeColRHS[@arg,$item[1],$item[2]]
| { NewFormula($arg[0],$arg[1],NewList(@arg[2..$#arg])); }
# --- 1st line handles it through more RHS ???
# --- 2nd line could be preceded by (>0) if it ends formula
# --- 3rd line could be followed by (>0)
punctExpr : PUNCT Expression { [$item[1],$item[2]]; }
relopExpr : relop Expression { [$item[1],$item[2]]; }
| relop /^\Z/ { [$item[1], Absent()]; }
metarelopFormula :
METARELOP Formula { [$item[1],$item[2]]; }
| METARELOP /^\Z/ { [$item[1], Absent()]; }
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# `Modifier' formula, things like $<0$, that might follow another formula or text.
# Absent() is a placeholder for the missing thing... (?)
# [and also when the LHS is moved away, due to alignment rearrangement]
modifierFormulae : modifierFormula moreFormulae[$item[1]]
modifierFormula : relop Expression moreRHS[Absent(),$item[1],$item[2]]
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Expressions; sums of terms
# Abstractly, things combined by operators binding tighter than relations
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Expressions : Expression punctExpr(s?)
{ NewList($item[1],map(@$_,@{$item[2]})); }
Expression : SignedTerm moreTerms[[],$item[1]] addExpressionModifier[$item[2]]
# # very tentatively allow an operator as a complete expression
# # BUT, this should only suceed if at end, or followed by punctuation!!!!!!!
# # (or CLOSE, or... ?!?!?!?)
| AnyOp ...anyOpIsolator { $item[1]; }
anyOpIsolator : /^\Z/ | PUNCT | CLOSE
# moreTerms[ [($term,$addop)*], $term]; Check for more addop & term's
moreTerms :
/^\Z/ { LeftRec(@{$arg[0]},$arg[1]); } # short circuit!
| AddOp moreTerms2[$arg[0],$arg[1],$item[1]]
| { LeftRec(@{$arg[0]},$arg[1]); }
# moreTerms2[ [($term,$addop)*], $term, $addop]; Check if addop is followed
# by another term, or if not, it presumably represents a limiting form
# like "a+" (ie a from above)
moreTerms2 : Term moreTerms[ [@{$arg[0]},$arg[1],$arg[2]],$item[1] ]
| { LeftRec(@{$arg[0]},Apply(New('limit-from'),$arg[1],$arg[2])); }
# addExpressionModifier[$expr]
addExpressionModifier :
/^\Z/ { $arg[0];} # short circuit!
| PUNCT(?) OPEN relop Expression balancedClose[$item[2]]
{ Apply(New('annotated'),$arg[0],
Fence($item[2], Apply($item[3],Absent(),$item[4]),$item[5])); }
# An alternative form would have OPEN Expression relop...
# but that seems less like a "modifier" and more like a relation as argument!
### | PUNCT(?) OPEN Expression relop Expression
### moreRHS[$item[3],$item[4],$item[5]] balancedClose[$item[2]]
### { Apply(New('annotated'),$arg[0],Fence($item[2],$item[6],$item[7])); }
| PUNCT(?) OPEN MODIFIEROP Expression balancedClose[$item[2]]
{ Apply(New('annotated'),$arg[0],
Fence($item[2], Apply($item[3],Absent(),$item[4]),$item[5])); }
| MODIFIER
{ Apply(New('annotated'),$arg[0],$item[1]); }
| MODIFIEROP Expression
{ Apply($item[1],$arg[0],$item[2]); }
| { $arg[0]; }
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Terms: products of factors
# Abstractly, things combined by operators binding tighter than addition
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SignedTerm : AddOp Term { Apply($item[1],$item[2]); }
| Term
Term : Factor moreFactors[$item[1]]
# moreFactors[$factor]
moreFactors :
/^\Z/ { $arg[0];} # short circuit!
| MulOp Factor moreFactors[ApplyNary($item[1],$arg[0],$item[2])]
# Given an explicit COMPOSEOP, we'll assume the preceding is
# an implicit lambda of some sort(?)
| COMPOSEOP makeComposition[$arg[0],$item[1]]
| Factor moreFactors[ApplyNary(InvisibleTimes(),$arg[0],$item[1])] ##before |
| { ($forbidEvalAt || $forbidVertBar ? undef : 1); }
evalAtOp maybeEvalAt[$arg[0],$item[2]]
| { ($forbidEvalAt || $forbidVertBar ? undef : 1); } ## conditional probability?
evalAtOp ExpressionsNoBars
{ ApplyNary(Annotate($item[2],role=>'MODIFIEROP', meaning=>'conditional'),$arg[0],$item[3]); }
| Factor moreFactors[ApplyNary(InvisibleTimes(),$arg[0],$item[1])]
| { $arg[0]; }
ExpressionsNoBars : <rulevar: local $forbidVertBar = 1>
ExpressionsNoBars : Expressions
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Factors: function applications, postfix on atoms, etc.
# Abstractly, things combined by operators binding tighter than multiplication
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Factor :
# These 2nd two are Iffy; hopefully the 1st rule will protect from backtrack?
OPEN ARRAY CLOSE addScripts[Fence($item[1],$item[2],$item[3])]
# perhaps only when OPEN or CLOSED is { or } ??
# should be explicitly {, and moreover the array should be only 1 or 2 columns!
| LBRACE ARRAY { InterpretDelimited(New('cases'),$item[1],$item[2],Absent()); }
| ARRAY RBRACE { InterpretDelimited(New('cases'),Absent(),$item[1],$item[2]); }
| preScripted['FUNCTION'] addArgs[$item[1]]
| preScripted['OPFUNCTION'] addOpFunArgs[$item[1]]
| preScripted['TRIGFUNCTION'] addTrigFunArgs[$item[1]]
| preScripted['ATOM_OR_ID'] maybeArgs[$item[1]]
| preScripted['UNKNOWN'] doubtArgs[$item[1]]
| NUMBER addScripts[$item[1]]
| SCRIPTOPEN scriptFactorOpen[$item[1]]
| OPEN factorOpen[$item[1]]
# handle INTOP seperately, since it recognizes d as diff
| preScripted['INTOP'] addIntOpArgs[$item[1]]
| preScripted['bigop'] addOpArgs[$item[1]]
| { ($forbidVertBar ? undef : 1); }
SINGLEVERTBAR SINGLEVERTBAR absExpression SINGLEVERTBAR SINGLEVERTBAR # || exp || ==> norm
addScripts[Fence(CatSymbols($item[2],$item[3],undef,"\x{2016}",role=>'OPEN'),
$item[4],
CatSymbols($item[5],$item[6],undef,"\x{2016}",role=>'CLOSE'))]
| { ($forbidVertBar ? undef : 1); }
VERTBAR absExpression VERTBAR # | exp | => absolute-value
addScripts[Fence(MorphVertbar($item[2],'OPEN'),$item[3],MorphVertbar($item[4],'CLOSE'))]
| { ($forbidVertBar ? undef : IsNotationAllowed('QM')); }
MIDBAR ketExpression RANGLE { SawNotation('QM'); } # | exp > ==> ket
addScripts[InterpretDelimited(New('ket'),
Annotate($item[2],role=>'OPEN'),$item[3],Annotate($item[4],role=>'CLOSE'))] # ket
| { IsNotationAllowed('QM'); }
LANGLE ketExpression MIDBAR maybeBra[$item[2],$item[3],$item[4]]
| { IsNotationAllowed('QM'); }
LANGLE absExpression RANGLE
addScripts[Fence(Annotate($item[2],role=>'OPEN'),
$item[3],
Annotate($item[4],role=>'CLOSE'))]
| OPERATOR addScripts[$item[1]] nestOperators[$item[2]]
addOpFunArgs[$item[3]]
ATOM_OR_ID : ATOM | ID | ARRAY
# A restricted sort of Factor for the unparenthesized argument to a function.
# Note f g h => f*g*h, but f g h x => f(g(h(x))) Seems like what people mean...
# Should there be a special case for trigs?
barearg : aBarearg moreBareargs[$item[1]]
aBarearg :
preScripted['FUNCTION'] addArgs[$item[1]]
| preScripted['OPFUNCTION'] addOpFunArgs[$item[1]]
| preScripted['TRIGFUNCTION'] addTrigFunArgs[$item[1]]
| preScripted['ATOM_OR_ID'] maybeArgs[$item[1]]
| preScripted['UNKNOWN'] doubtArgs[$item[1]]
| NUMBER addScripts[$item[1]]
| VERTBAR absExpression VERTBAR
addScripts[Fence(MorphVertbar($item[1],'OPEN'),$item[2],MorphVertbar($item[3],'CLOSE'))]
# moreBareargs[$argpart]
moreBareargs :
/^\Z/ { $arg[0];} # short circuit!
| MulOp aBarearg moreBareargs[ApplyNary($item[1],$arg[0],$item[2])]
| aBarearg moreBareargs[ApplyNary(InvisibleTimes(),$arg[0],$item[1])]
| { $arg[0]; }
# A variation that does not allow a bare trig function
trigBarearg : aTrigBarearg moreTrigBareargs[$item[1]]
aTrigBarearg :
preScripted['FUNCTION'] addArgs[$item[1]]
| preScripted['OPFUNCTION'] addOpFunArgs[$item[1]]
| preScripted['ATOM_OR_ID'] maybeArgs[$item[1]]
| preScripted['UNKNOWN'] doubtArgs[$item[1]]
| NUMBER addScripts[$item[1]]
| VERTBAR absExpression VERTBAR
addScripts[Fence(MorphVertbar($item[1],'OPEN'),$item[2],MorphVertbar($item[3],'CLOSE'))]
# moreTrigBareargs[$argpart]
moreTrigBareargs :
/^\Z/ { $arg[0];} # short circuit!
| MulOp aTrigBarearg
moreTrigBareargs[ApplyNary($item[1],$arg[0],$item[2])]
| aTrigBarearg
moreTrigBareargs[ApplyNary(InvisibleTimes(),$arg[0],$item[1])]
| { $arg[0]; }
# maybeEvalAt[$thing,$vertbar]
maybeEvalAt :
POSTSUBSCRIPT moreEvalAt[$arg[0],$arg[1],$item[1]]
| POSTSUPERSCRIPT POSTSUBSCRIPT moreFactors[NewEvalAt($arg[0],$arg[1],$item[2],$item[1])]
# moreEvalAt[$thing,$vertbar,$sub]
moreEvalAt :
POSTSUPERSCRIPT moreFactors[NewEvalAt($arg[0],$arg[1],$arg[2],$item[1])]
| moreFactors[NewEvalAt($arg[0],$arg[1],$arg[2],undef)]
#======================================================================
# After < a | we might be done, or get <a|b> or <a|H|b>
# <$expr | maybeBra[$langle,$expr,$bar]
maybeBra : <rulevar: local $forbidVertBar = 1>
maybeBra :
ketExpression maybeBraket[$arg[0],$arg[1],$arg[2],$item[1]]
| { SawNotation('QM'); }
addScripts[InterpretDelimited(New('bra'),
Annotate($arg[0],role=>'OPEN'),$arg[1],Annotate($arg[2],role=>'CLOSE'))]
# <$expr1|$expr2 maybeBraket[$langle,$expr1,$bar,$expr2]
maybeBraket :
RANGLE { SawNotation('QM'); }
addScripts[InterpretDelimited(New('inner-product', undef,role=>'MIDDLE'),
Annotate($arg[0],role=>'OPEN'),$arg[1],
Annotate($arg[2],role=>'MIDDLE'),
$arg[3],Annotate($item[1],role=>'CLOSE'))]
| MIDBAR ketExpression RANGLE { SawNotation('QM'); }
addScripts[InterpretDelimited(New('quantum-operator-product',undef), # Is this a good representation?
Annotate($arg[0],role=>'OPEN'),$arg[1],
Annotate($arg[2],role=>'CLOSE'),
$arg[3],
Annotate($item[1],role=>'OPEN'),$item[2],
Annotate($item[3],role=>'CLOSE'))]
# bra's and ket's (ie <foo| & |foo>) can contain a rather wide variety of things
# from simple symbols to full (but typically short) formula, and so we
# want to use the Formulae production. However, for that to work,
# we need to keep |, < and > (which delimit the bra & ket) from being
# interpreted as usual, otherwise the parse will walk off the end, or
# fail at a level that precludes backtracking.
ketExpression : <rulevar: local $forbidVertBar = 1>
ketExpression : <rulevar: local $forbidLRAngle = 1>
ketExpression : Formulae
| METARELOP | MODIFIEROP
#======================================================================
# absExpression; need to be careful about misinterpreting the next |
# since we can't backtrack across productions.
# Disable evalAt notation ( |_{x=0} ) and explicitly control abs nesting.
absExpression : <rulevar: local $forbidEvalAt = 1>
absExpression : <rulevar: local $MaxAbsDepth = $MaxAbsDepth-1>
absExpression : { ($MaxAbsDepth >= 0 ? 1 : (SawNotation('AbsFail')&& undef)); } Expression
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Adding pre|post sub|super scripts to various things.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# addScripts[$base] ; adds any following sub/super scripts to $base.
addScripts :
/^\Z/ { $arg[0];} # short circuit!
| POSTSUPERSCRIPT addScripts[NewScript($arg[0],$item[1])]
| POSTSUBSCRIPT addScripts[NewScript($arg[0],$item[1])]
| POSTFIX addScripts[Apply($item[1],$arg[0])]
| { $arg[0]; }
# ================================================================================
# preScripted['RULE']; match a RULE possibly preceded by sub/super prescripts,
# possibly followed by sub/superscripts. The initial prescript can only be FLOAT
# but the following ones can be either POST (which combine) or FLOAT (which don't)
preScripted :
FLOATSUPERSCRIPT inpreScripted[$arg[0]] { NewScript($item[2],$item[1], 'pre');}
| FLOATSUBSCRIPT inpreScripted[$arg[0]] { NewScript($item[2],$item[1], 'pre');}
| <matchrule:$arg[0]> addScripts[$item[1]]
# inpreScripted[$prescript]
inpreScripted :
POSTSUPERSCRIPT inpreScripted[$arg[0]] { NewScript($item[2],$item[1], 'pre');}
| POSTSUBSCRIPT inpreScripted[$arg[0]] { NewScript($item[2],$item[1], 'pre');}
| FLOATSUPERSCRIPT inpreScripted[$arg[0]] { NewScript($item[2],$item[1], 'pre');}
| FLOATSUBSCRIPT inpreScripted[$arg[0]] { NewScript($item[2],$item[1], 'pre');}
| <matchrule:$arg[0]> addScripts[$item[1]]
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Parenthetical: Things wrapped in OPEN .. CLOSE
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# ================================================================================
# Factors that begin with OPEN; grouped expressions and objects like sets,
# intervals, etc.
# factorOpen[$open] : Dealing with various things that start with an open.
factorOpen :
AddOp balancedClose[$arg[0]] addScripts[Fence($arg[0],$item[1],$item[2])] # For (-)
# Parenthesized Operator possibly w/scripts
| preScripted['bigop'] balancedClose[$arg[0]]
addScripts[Fence($arg[0],$item[1],$item[2])] Factor
{ Apply($item[3],$item[4]); }
# Parenthesized Operator including a pre-factor
| Factor preScripted['bigop'] balancedClose[$arg[0]]
addScripts[Fence($arg[0],
Apply(InvisibleTimes(),$item[1],$item[2]),$item[3])] Factor
{ Apply($item[4],$item[5]); }
# read expression too? match subcases.
| Expression factorOpenExpr[$arg[0],$item[1]]
# Empty OPEN CLOSE ?
| balancedClose[$arg[0]] addScripts[Fence($arg[0],$item[1])]
# Sequence starting with an operator ?
| AnyOp factorOpenExpr[$arg[0],$item[1]]
# Simple modified factors P(x=0), P(a<b<c) etc.
| Formula balancedClose[$arg[0]] addScripts[Fence($arg[0],$item[1],$item[2])] # For (x>1)
# factorOpenExpr[$open,$expr]; Try to recognize various things that start
# this way. Need some extra productions for sets (w/possible middle '|' )
# and vectors; all n-ary.
factorOpenExpr :
# 2nd expression; some kind of pair, interval, set, whatever [Any CLOSE, NOT balancedClose]
(PUNCT Expression { [$item[1],$item[2]]; })(s) CLOSE
addScripts[Fence($arg[0],$arg[1],map(@$_,@{$item[1]}),$item[2])]
# only 2 things and 2nd one is an op?; some kind of group???
| PUNCT AnyOp balancedClose[$arg[0]]
addScripts[InterpretDelimited(New('group'),
$arg[0],$arg[1],$item[1],$item[2],$item[3])]
# parenthesized expression.
| balancedClose[$arg[0]] addScripts[Fence($arg[0],$arg[1],$item[1])]
# ================================================================================
# Sets special cases
# A conditionalized set
# scriptFactorOpen[$open]
scriptFactorOpen :
FormulaNOBar suchThatOp Formulae balancedClose[$arg[0]]
addScripts[InterpretDelimited(New('conditional-set'),
$arg[0], $item[1],$item[2], $item[3],$item[4])]
# Else fall through to normal factorOpen
| factorOpen[$arg[0]]
FormulaNOBar : <rulevar: local $forbidVertBar = 1>
FormulaNOBar : Formula
# The "such that" that can appear in a sets like {a "such that" predicate(a)}
# accept vertical bars, and colon
suchThatOp : MIDDLE
| VERTBAR { MorphVertbar($item[1],'MIDDLE'); }
| /METARELOP:colon:\d+/ { Lookup($item[1]); }
# ================================================================================
# Function args, etc.
# maybeArgs[$function] ; Add arguments to an identifier, but only if made explict.
maybeArgs :
/^\Z/ { $arg[0];} # short circuit!
| APPLYOP requireArgs[$arg[0]]
| { $arg[0]; }
# doubtArgs[$unknown]; Check for apparent arguments following an
# Unknown (unclassified) item. If an explicit APPLYOP follows,
# it seemingly asserts that the preceding _is_ a function,
# otherwise Warn if there seems to be an arglist.
doubtArgs :
/^\Z/ { $arg[0];} # short circuit!
| APPLYOP requireArgs[$arg[0]]
| { IsNotationAllowed('MaybeFunctions'); } OPEN forbidArgs[$arg[0],$item[2]]
| { $arg[0]; }
# forbidArgs[$unknown,$open]; Got a suspicious pattern: an unknown and open.
# If the following seems to be an argument list, warn.
forbidArgs :
Argument (argPunct Argument)(s) balancedClose[$arg[1]]
{ MaybeFunction($arg[0]); undef; }
# Term really could be Argument, but that gives a "possible function" warning
# even for a(b+c) which has a good reason for the parentheses; These patterns FAIL anyway!!
| Term balancedClose[$arg[1]] { MaybeFunction($arg[0]); undef; }
# requireArgs[$function]; Add arguments following a known function, failing if it
# isn't there! Typically this follows an explicit applyop
requireArgs :
OPEN Argument (argPunct Argument {[$item[1],$item[2]];})(s?)
balancedClose[$item[1]]
{ ApplyDelimited($arg[0],$item[1],$item[2],
map(@$_,@{$item[3]}),$item[4]); }
# Hmm, should only be applicable to _some_ functions ???
| barearg { Apply($arg[0],$item[1]); }
# addArgs[$function]; We've got a function; Add following arguments to a
# function, if present. Also recognizes compostion type ops (something
# combining two functions into a function)
addArgs :
/^\Z/ { $arg[0];} # short circuit!
| addEasyArgs[$arg[0]]
# Accept bare arg (w/o parens) ONLY if an explicit APPLYOP
| APPLYOP barearg { Apply($arg[0],$item[2]);}
| { $arg[0]; } # Just return the function itself,then.
# addOpFunArgs[$function]; Same as above but for functions classified as
# OPFUNCTION. Ie operator-like functions such as \sin, that don't
# absolutely require parens around args.
addOpFunArgs :
/^\Z/ { $arg[0];} # short circuit!
| addEasyArgs[$arg[0]]
# Accept bare arg (w/o parens) for this class of functions.
| APPLYOP(?) barearg { Apply($arg[0],$item[2]);}
| { $arg[0]; } # Just return the function itself,then.
# addTrigFunArgs[$function]; Yet another variation;
# It differs in the barearg is restricted to non-trig
addTrigFunArgs :
/^\Z/ { $arg[0];} # short circuit!
| addEasyArgs[$arg[0]]
# Accept bare arg (w/o parens) for this class of functions.
| APPLYOP(?) trigBarearg { Apply($arg[0],$item[2]);}
| { $arg[0]; } # Just return the function itself,then.
# addEasyArgs[$function]; gets unambiguous compositions or parenthesized arguments
# These are the "easy" cases for addArgs and addOpFunArgs.
addEasyArgs :
COMPOSEOP makeComposition[$arg[0],$item[1]]
| APPLYOP(?) OPEN Argument
(argPunct Argument {[$item[1],$item[2]];})(s?)
balancedClose[$item[2]]
{ ApplyDelimited($arg[0],$item[2],$item[3],
map(@$_,@{$item[4]}),$item[5]); }
# A function (or other) argument would normally be a simple expression,
# but often relations (esp. Statistics) or arrows appear, so allow those as well.
Argument : Expression extendArgument[$item[1]]
# extendArgument[$argpart] : recognize some longer form "arguments";
# things that may look like relations.
extendArgument :
/^\Z/ { $arg[0]; } # short circuit
| relopExpr(s) extendArgument[NewFormula($arg[0],map(@$_,@{$item[1]}))]
| METARELOP Formula extendArgument[Apply($item[1],$arg[0],$item[2])]
| { $arg[0]; }
# makeComposition[$thing,$comp]; Given something that presumably is a function,
# and a composition operator, read another function and possibly args
makeComposition :
preScripted['FUNCTION'] addArgs[Apply($arg[1],$arg[0],$item[1])]
{ $item[2]; }
| preScripted['OPFUNCTION'] addOpFunArgs[Apply($arg[1],$arg[0],$item[1])]
{ $item[2]; }
| preScripted['TRIGFUNCTION']
addTrigFunArgs[Apply($arg[1],$arg[0],$item[1])] { $item[2]; }
# Given an explicit composition operator, the next thing may safely(?)
# be assumed to be a function, so treat it as such.
| Factor addArgs[Apply($arg[1],$arg[0],$item[1])] { $item[2]; }
# addOpArgs[$bigop]; Add following Term to a bigop, if present.
addOpArgs :
/^\Z/ { $arg[0];} # short circuit!
# Is the APPLYOP getting "lost" here?
| APPLYOP(?) Factor moreOpArgFactors[$item[2]] { Apply($arg[0],$item[3]);}
| { $arg[0]; }
# moreOpArgFactors[$factor1] : Similar to moreFactors,
# but w/o evalAtOp since that most likely belongs to the operator, not
# the factors.
moreOpArgFactors :
/^\Z/ { $arg[0];} # short circuit!
| MulOp Factor moreOpArgFactors[ApplyNary($item[1],$arg[0],$item[2])]
| Factor moreOpArgFactors[ApplyNary(InvisibleTimes(),$arg[0],$item[1])]
| { $arg[0]; }
# addIntOpArgs[$bigop]; Add following Term to a INTOP as integrand, if present.
# The main point here is to recognize a "d" as a diff operator.
# This is insufficient, in general, because the "d" may be contained within
# a subexpression, particularly a fraction; the top-level parsing needs to be able
# to parse subexpressions within a context, and yet, needs to parse the subexpressions
# beforehand to (potentially) determine the role of the subexpression!
addIntOpArgs :
/^\Z/ { $arg[0];} # short circuit!
# Is the APPLYOP getting "lost" here?
| APPLYOP(?) IntFactor moreIntOpArgFactors[$item[2]] { Apply($arg[0],$item[3]);}
| { $arg[0]; }
# moreIntOpArgFactors[$factor1] : Similar to moreOpArgFactors,
# but recognizing d as diff
moreIntOpArgFactors :
/^\Z/ { $arg[0];} # short circuit!
| MulOp IntFactor moreIntOpArgFactors[ApplyNary($item[1],$arg[0],$item[2])]
| IntFactor moreIntOpArgFactors[ApplyNary(InvisibleTimes(),$arg[0],$item[1])]
| { $arg[0]; }
IntFactor :
## diffd ATOM_OR_ID { Apply(Annotate($item[1],role=>'DIFFOP',meaning=>'differential-d'),$item[2]); }
## | diffd UNKNOWN { Apply(Annotate($item[1],role=>'DIFFOP',meaning=>'differential-d'),$item[2]); }
diffd ATOM_OR_ID addScripts[$item[2]]
{ Apply(Annotate($item[1],role=>'DIFFOP',meaning=>'differential-d'),$item[3]); }
| diffd UNKNOWN addScripts[$item[2]]
{ Apply(Annotate($item[1],role=>'DIFFOP',meaning=>'differential-d'),$item[3]); }
| Factor { $item[1]; }
diffd :
/UNKNOWN:d:\d+/ { Lookup($item[1]); }
| /ID:d:\d+/ { Lookup($item[1]); }
# Punctuation separating function arguments; things marked MIDDLE could
# also separate arguments
# With great trepidation, I'm adding VERTBAR here
argPunct : PUNCT | MIDDLE
| VERTBAR { MorphVertbar($item[1],'PUNCT'); }
# ================================================================================
# Operator args, etc.
# nestOperators[$operator*]; Nest a possible sequence of operators
nestOperators :
/^\Z/ { recApply(@arg); }
| OPERATOR addScripts[$item[1]] nestOperators[@arg,$item[2]]
| FUNCTION addScripts[$item[1]] { recApply(@arg,$item[2]); }
| OPFUNCTION addScripts[$item[1]] { recApply(@arg,$item[2]); }
| TRIGFUNCTION addScripts[$item[1]] { recApply(@arg,$item[2]); }
| OPEN Expression balancedClose[$item[1]]
{ recApply(@arg[0..$#arg-1],
ApplyDelimited($arg[$#arg],$item[1],$item[2],$item[3])); }
| { recApply(@arg); }
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# (slightly) structured operators
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Same as anyop, at the moment.
AnyOp : relop | METARELOP | ARROW | AddOp | MulOp | MODIFIEROP
| preScripted['bigop']
| OPERATOR addScripts[$item[1]]
# Sub or superscripts on operators;
# we recognize the structure, not necessarily the meaning
AddOp : BINOP addOpDecoration[$item[1]]
| ADDOP addOpDecoration[$item[1]]
MulOp : BINOP addOpDecoration[$item[1]]
| MULOP addOpDecoration[$item[1]]
# (BINOP can never really be satisfactory; it comes from something marked
# as \mathbin; we don't know any more about it)
# addOpDecoration[$op] : Decorations for an operator;
# Same thing as addScripts, but not allowing POSTFIX
addOpDecoration :
/^\Z/ { $arg[0];} # short circuit!
| POSTSUPERSCRIPT addOpDecoration[DecorateOperator($arg[0],$item[1])]
| POSTSUBSCRIPT addOpDecoration[DecorateOperator($arg[0],$item[1])]
| { $arg[0]; }
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Pseudo-Terminals.
# Useful combinations or subsets of terminals.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# A generalized relational operator or arrow
# Note we disallow < or > if we're parsing the contents of a bra or ket!
relop :
{ ($forbidLRAngle ? 1 : undef); } /RELOP:(less|greater)-than:\d+/ <commit> <reject>
| /RELOP:less-than:\d+/ /RELOP:less-than:\d+/ { TwoPartRelop($item[1],$item[2]) }
| /RELOP:greater-than:\d+/ /RELOP:greater-than:\d+/ { TwoPartRelop($item[1],$item[2]) }
| /RELOP:(less|greater)-than:\d+/ /RELOP:equals:\d+/ { TwoPartRelop($item[1],$item[2]) }
| RELOP addOpDecoration[$item[1]]
| ARROW addOpDecoration[$item[1]]
# Check out whether diffop should be treated as bigop or operator
# It depends on the binding
bigop : BIGOP | SUMOP | INTOP | LIMITOP | DIFFOP
# SUPOP is really only \prime(s) (?)
supops : SUPOP(s) { New(undef,
join('',map($_->textContent,@{$item[1]})),
role=>'SUPOP',
name=>'prime'.scalar(@{$item[1]})); }
# ================================================================================
# And some special cases...
# balancedClose[$open] : Match a CLOSE that `corresponds' to the OPEN
balancedClose : CLOSE { (isMatchingClose($arg[0],$item[1]) ? 1 : undef) } { $item[1]; }
# The "evaluated at" operator, typically a vertical bar followed by a subscript
# equation. But it is ofen used in \left. \right| pairs!
evalAtOp : VERTBAR
| /CLOSE:\|:\d+/ { Lookup($item[1]); }
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Terminals / Lexer
# These correspond to the TeX tokens.
# The Lexer strings are of the form TYPE:NAME:NUMBER where
# TYPE is the grammatical role, or part of speech,
# NAME is the specific name (semantic or presentation) of the token
# NUMBER is the position of the specific token in the current token sequence.
#
# NOTE: RecDescent doesn't clearly distinguish lexing from parsing
# and so it allows us to interpret the same item as several distinct
# terminals; Presumably other parsers would not allow this.
# In a couple of cases, we have symbols that can be used in a few
# different ways:
# | as vertical bar, open or close, also as a close used for eval-at!
# : as meta-relation, as such-that
# <, > can be relop or part of brackets (eg. qm, etc)
# Perhaps these symbols should get a special role reflecting it's specialness
# and then have pseudo-terminals that combine (eg. relop == RELOP | langle)
# This nibbles at the edge of the Ambiguity issue; if it turns out that
# a multi-meaning symbol gets used in a particular way, we'd want to assure
# that it's role, meaning, etc, gets changed to reflect the specific usage!
#
# Upon reflection, this implies that OPEN|CLOSE are rather awkward as roles.
# \left< can be an OPEN _or_ RELOP
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ATOM : /ATOM:\S*:\d+/ { Lookup($item[1]); }
UNKNOWN : /UNKNOWN:\S*:\d+/ { Lookup($item[1]); }
ID : /ID:\S*:\d+/ { Lookup($item[1]); }
ARRAY : /ARRAY:\S*:\d+/ { Lookup($item[1]); }
NUMBER : /NUMBER:\S*:\d+/ { Lookup($item[1]); }
PUNCT : /PUNCT:\S*:\d+/ { Lookup($item[1]); }
PERIOD : /PERIOD:\S*:\d+/ { Lookup($item[1]); }
RELOP : /RELOP:\S*:\d+/ { Lookup($item[1]); }
LANGLE : /RELOP:less-than:\d+/ { Lookup($item[1]); }
| /OPEN:langle:\d+/ { Lookup($item[1]); }
RANGLE : /RELOP:greater-than:\d+/ { Lookup($item[1]); }
| /CLOSE:rangle:\d+/ { Lookup($item[1]); }
MIDBAR : /VERTBAR:\S*:\d+/ { Lookup($item[1]); }
| /MIDDLE:\|:\d+/ { Lookup($item[1]); }
| /MIDDLE:parallel-to:\d+/ { Lookup($item[1]); }
LBRACE : /OPEN:\{:\d+/ { Lookup($item[1]); }
RBRACE : /CLOSE:\}:\d+/ { Lookup($item[1]); }
METARELOP : /METARELOP:\S*:\d+/ { Lookup($item[1]); }
MODIFIEROP : /MODIFIEROP:\S*:\d+/ { Lookup($item[1]); }
MODIFIER : /MODIFIER:\S*:\d+/ { Lookup($item[1]); }
ARROW : /ARROW:\S*:\d+/ { Lookup($item[1]); }
ADDOP : /ADDOP:\S*:\d+/ { Lookup($item[1]); }
MULOP : /MULOP:\S*:\d+/ { Lookup($item[1]); }
BINOP : /BINOP:\S*:\d+/ { Lookup($item[1]); }
POSTFIX : /POSTFIX:\S*:\d+/ { Lookup($item[1]); }
FUNCTION : /FUNCTION:\S*:\d+/ { Lookup($item[1]); }
OPFUNCTION : /OPFUNCTION:\S*:\d+/ { Lookup($item[1]); }
TRIGFUNCTION : /TRIGFUNCTION:\S*:\d+/ { Lookup($item[1]); }
APPLYOP : /APPLYOP:\S*:\d+/ { Lookup($item[1]); }
COMPOSEOP : /COMPOSEOP:\S*:\d+/ { Lookup($item[1]); }
SUPOP : /SUPOP:\S*:\d+/ { Lookup($item[1]); }
OPEN : /OPEN:\S*:\d+/ { Lookup($item[1]); }
SCRIPTOPEN : /OPEN:\{:\d+/ { Lookup($item[1]); }
CLOSE : /CLOSE:\S*:\d+/ { Lookup($item[1]); }
MIDDLE : /MIDDLE:\S*:\d+/ { Lookup($item[1]); }
VERTBAR : /VERTBAR:\S*:\d+/ { Lookup($item[1]); }
SINGLEVERTBAR : /VERTBAR:\|:\d+/ { Lookup($item[1]); }
BIGOP : /BIGOP:\S*:\d+/ { Lookup($item[1]); }
SUMOP : /SUMOP:\S*:\d+/ { Lookup($item[1]); }
INTOP : /INTOP:\S*:\d+/ { Lookup($item[1]); }
LIMITOP : /LIMITOP:\S*:\d+/ { Lookup($item[1]); }
DIFFOP : /DIFFOP:\S*:\d+/ { Lookup($item[1]); }
OPERATOR : /OPERATOR:\S*:\d+/ { Lookup($item[1]); }
POSTSUBSCRIPT : /POSTSUBSCRIPT:\S*:\d+/ { Lookup($item[1]); }
POSTSUPERSCRIPT : /POSTSUPERSCRIPT:\S*:\d+/ { Lookup($item[1]); }
FLOATSUPERSCRIPT : /FLOATSUPERSCRIPT:\S*:\d+/ { Lookup($item[1]); }
FLOATSUBSCRIPT : /FLOATSUBSCRIPT:\S*:\d+/ { Lookup($item[1]); }
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|