1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
<?xml version="1.0" encoding="UTF-8"?>
<?latexml RelaxNGSchema="LaTeXML"?>
<document xmlns="http://dlmf.nist.gov/LaTeXML">
<resource src="LaTeXML.css" type="text/css"/>
<para>
<p class="ltx_align_center"><text fontsize="140%">An elementary proof of the reconstruction conjecture</text></p>
</para>
<para>
<break/>
</para>
<para>
<p class="ltx_align_center">D. Remifa<note mark="*" role="footnote">Thanks to
the editors of this wonderful journal!</note></p>
<p class="ltx_align_center">Department of Inconsequential Studies</p>
<p class="ltx_align_center">Solatido College, North Kentucky, USA</p>
<p class="ltx_align_center"><text font="typewriter">remifa@dis.solatido.edu</text></p>
</para>
<para>
<break/>
</para>
<para>
<p class="ltx_align_center">Submitted: Jan 1, 2009; Accepted: Jan 2, 2009; Published: Jan 3, 2009</p>
<p class="ltx_align_center">Mathematics Subject Classifications: 05C88, 05C89</p>
</para>
<para>
<break/>
</para>
<para class="ltx_noindent">
<p class="ltx_align_center"><text font="bold">Abstract</text></p>
<p>The reconstruction conjecture states that the multiset of unlabeled
vertex-deleted subgraphs of a graph determines the graph, provided it
has at least 3 vertices. A version of the problem was first stated
by Stanisław Ulam. In this paper, we show that the conjecture can
be proved by elementary methods. It is only necessary to integrate
the Lenkle potential of the Broglington manifold over the quantum
supervacillatory measure in order to reduce the set of possible
counterexamples to a small number (less than a trillion). A simple
computer program that implements Pipletti’s classification theorem
for torsion-free Aramaic groups with simplectic socles can then
finish the remaining cases.</p>
</para>
<para>
<break/>
</para>
<section>
<title font="bold">1. Introduction.
</title>
<para>
<p>This is the start of the introduction.</p>
</para>
</section>
<section>
<title font="bold">2. Equations
</title>
<para>
<equation>
<Math mode="display" tex="a=b+c" text="a = b + c">
<XMath>
<XMApp>
<XMTok meaning="equals" role="RELOP">=</XMTok>
<XMTok font="italic" role="UNKNOWN">a</XMTok>
<XMApp>
<XMTok meaning="plus" role="ADDOP">+</XMTok>
<XMTok font="italic" role="UNKNOWN">b</XMTok>
<XMTok font="italic" role="UNKNOWN">c</XMTok>
</XMApp>
</XMApp>
</XMath>
</Math>
<tags>
<tag><Math text="1 * [Draft]">
<XMath>
<XMApp>
<XMTok meaning="times" role="MULOP"></XMTok>
<XMDual>
<XMRef idref="id1"/>
<XMWrap>
<XMTok role="OPEN" stretchy="false">(</XMTok>
<XMTok meaning="1" role="NUMBER" xml:id="id1">1</XMTok>
<XMTok role="CLOSE" stretchy="false">)</XMTok>
</XMWrap>
</XMDual>
<XMText width="0.0pt">Draft</XMText>
</XMApp>
</XMath>
</Math></tag>
</tags>
</equation>
</para>
<para>
<equation>
<Math mode="display" tex="a=b+c" text="a = b + c">
<XMath>
<XMApp>
<XMTok meaning="equals" role="RELOP">=</XMTok>
<XMTok font="italic" role="UNKNOWN">a</XMTok>
<XMApp>
<XMTok meaning="plus" role="ADDOP">+</XMTok>
<XMTok font="italic" role="UNKNOWN">b</XMTok>
<XMTok font="italic" role="UNKNOWN">c</XMTok>
</XMApp>
</XMApp>
</XMath>
</Math>
<tags>
<tag><Math text="1">
<XMath>
<XMDual>
<XMRef idref="id2"/>
<XMWrap>
<XMTok role="OPEN" stretchy="false">(</XMTok>
<XMTok meaning="1" role="NUMBER" xml:id="id2">1</XMTok>
<XMTok role="CLOSE" stretchy="false">)</XMTok>
</XMWrap>
</XMDual>
</XMath>
</Math></tag>
</tags>
</equation>
</para>
<para>
<equation>
<Math mode="display" tex="a=b+c" text="a = b + c">
<XMath>
<XMApp>
<XMTok meaning="equals" role="RELOP">=</XMTok>
<XMTok font="italic" role="UNKNOWN">a</XMTok>
<XMApp>
<XMTok meaning="plus" role="ADDOP">+</XMTok>
<XMTok font="italic" role="UNKNOWN">b</XMTok>
<XMTok font="italic" role="UNKNOWN">c</XMTok>
</XMApp>
</XMApp>
</XMath>
</Math>
<tags>
<tag><Math text="1 ^ 2">
<XMath>
<XMDual>
<XMRef idref="id3"/>
<XMWrap>
<XMTok role="OPEN" stretchy="false">(</XMTok>
<XMApp xml:id="id3">
<XMTok role="SUPERSCRIPTOP" scriptpos="post1"/>
<XMTok meaning="1" role="NUMBER">1</XMTok>
<XMTok fontsize="70%" meaning="2" role="NUMBER">2</XMTok>
</XMApp>
<XMTok role="CLOSE" stretchy="false">)</XMTok>
</XMWrap>
</XMDual>
</XMath>
</Math></tag>
</tags>
</equation>
</para>
</section>
<section>
<title font="bold">3. Theorems
</title>
<theorem>
<title font="bold">1.2.3 A Theorem description</title>
<para>
<p><text font="slanted">The body, perhaps proof or whatever.</text></p>
</para>
</theorem>
<para>
<p>Now comes new material following the theorem, I would guess.</p>
</para>
</section>
</document>
|