File: Irrational.cpp

package info (click to toggle)
latte-int 1.7.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 38,260 kB
  • sloc: cpp: 32,231; sh: 4,413; makefile: 811; perl: 300
file content (409 lines) | stat: -rw-r--r-- 12,537 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/* Irrational.cpp -- Irrationalize (perturbate) cones

   Copyright 2006 Matthias Koeppe

   This file is part of LattE.
   
   LattE is free software; you can redistribute it and/or modify it
   under the terms of the version 2 of the GNU General Public License
   as published by the Free Software Foundation.

   LattE is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with LattE; if not, write to the Free Software Foundation,
   Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/

#include <iostream>
using namespace std;

// #define DEBUG_IRRATIONAL

#include <cassert>

#include "Irrational.h"
#include "dual.h"
#include "convert.h"
#include "print.h"
#include "vertices/cdd.h"
#include "ramon.h"

static rationalVector *
computeConeStabilityCube_simplicial(listCone *cone, int numOfVars, 
				    ZZ &length_numerator,
				    ZZ &length_denominator)
{
  ZZ vertex_denominator;
  vec_ZZ vertex_numerator
    = scaleRationalVectorToInteger(cone->vertex->vertex, numOfVars,
				   vertex_denominator);
#ifdef DEBUG_IRRATIONAL
  cerr << "vertex = " << vertex_numerator << " / "
       << vertex_denominator << endl;
#endif
  // Compute vertex multipliers, multiplied by the determinant
  mat_ZZ dual = createFacetMatrix2(cone, numOfVars, numOfVars);
#ifdef DEBUG_IRRATIONAL
  cerr << "dual (-B^{-1}) = " << dual << endl;
#endif
  vec_ZZ scaled_D_lambda = dual * vertex_numerator;
  // Round down to go to the bottom of the known stability region
  int i;
  for (i = 0; i<numOfVars; i++) {
    ZZ l = scaled_D_lambda[i];
    div(scaled_D_lambda[i], l, vertex_denominator);
  }

#ifdef DEBUG_IRRATIONAL
  cerr << "bottom multipliers: " << scaled_D_lambda << endl;
#endif
  // Now move to the center; read it as the numerator over 2*D
  ZZ D = abs(cone->determinant);
  for (i = 0; i<numOfVars; i++)
    scaled_D_lambda[i] = scaled_D_lambda[i] * 2 + 1;
  vec_ZZ center_numerator
    =  (-transpose(createConeDecMatrix(cone, numOfVars, numOfVars))
	* scaled_D_lambda);
  ZZ center_denominator = 2 * D;
#ifdef DEBUG_IRRATIONAL
  cerr << "--center--> " << center_numerator << " / "
       << center_denominator << endl; 
#endif
  // Compute stability length
  length_numerator = 1;
  ZZ dual_1_norm, max_dual_1_norm;
  max_dual_1_norm = 0;
  for (i = 0; i<numOfVars; i++) {
    int j;
    dual_1_norm = 0;
    for (j = 0; j<numOfVars; j++)
      dual_1_norm += abs(dual[i][j]);
    if (dual_1_norm > max_dual_1_norm)
      max_dual_1_norm = dual_1_norm;
  }
  length_denominator = 2 * max_dual_1_norm;
  // Check whether at least the new vertex is OK.
  // (We do not check the length.)
  rationalVector *v = createRationalVector(numOfVars);
  for (i = 0; i<numOfVars; i++) {
    v->set_entry(i, center_numerator[i], center_denominator);
  }
  assertConesIntegerEquivalent(cone, v, numOfVars,
			       "Not integer equivalent with center");
  
  return v;
}

static rationalVector *
computeConeStabilityCube_general(listCone *cone, int numOfVars, 
				 ZZ &length_numerator,
				 ZZ &length_denominator)
{
  ZZ vertex_scale_factor;
  vec_ZZ scaled_vertex
    = scaleRationalVectorToInteger(cone->vertex->vertex, numOfVars,
				   vertex_scale_factor);
  listVector *matrix = NULL;
  listVector *facet;
  int i;
  for (facet = cone->facets; facet; facet = facet->rest) {
      ZZ sp;
      InnerProduct(sp, facet->first, scaled_vertex);
      ZZ floor;
      div(floor, sp, vertex_scale_factor);
      ZZ abs_sum;
      for (i = 0; i<numOfVars; i++)
	abs_sum += abs(facet->first[i]);
      vec_ZZ ineq;
      ineq.SetLength(numOfVars + 2);
      // First inequality:
      //   <f,x> + ||f||_1 lambda <= floor(<f,v>) + 1.
      ineq[0] = floor + 1;
      for (i = 0; i<numOfVars; i++)
	ineq[i+1] = -facet->first[i];
      ineq[numOfVars + 1] = -abs_sum;
      matrix = new listVector(ineq, matrix);
      // Second inequality:
      //  -<f,x> + ||f||_1 lambda <= -floor(<f,v>).
      ineq[0] = -floor;
      for (i = 0; i<numOfVars; i++)
	ineq[i+1] = facet->first[i];
      ineq[numOfVars + 1] = -abs_sum;
      matrix = new listVector(ineq, matrix);
  }
  vec_ZZ cost;
  cost.SetLength(numOfVars + 1);
  cost[numOfVars] = 1;
  rationalVector *optimal_solution
    = LP(matrix, cost, numOfVars + 1, false); //maximizes
  freeListVector(matrix);
  length_numerator = optimal_solution->numerators()[numOfVars];
  length_denominator = optimal_solution->denominators()[numOfVars];
  rationalVector *center = createRationalVector(numOfVars);
  for (i = 0; i<numOfVars; i++) {
    center->set_entry(i, optimal_solution->numerators()[i],
		      optimal_solution->denominators()[i]);
  }
  delete optimal_solution;
  return center;
}

/* Replace the given stability cube by some subcube whose CENTER and
   LENGTH are represented by "simpler" numbers.
   In particular, the LENGTH_NUMERATOR is 1.
*/
static void simplifyConeStabilityCube(rationalVector *center,
				      ZZ &length_numerator,
				      ZZ &length_denominator,
				      int numOfVars)
{
  ZZ m;
  div(m, length_denominator, length_numerator);
  m = m + 1;
  int k = NumBits(m);
  int i;
  ZZ c_denom;
  power2(c_denom, k + 1);
  ZZ c_numer;
  for (i = 0; i<numOfVars; i++) {
    LeftShift(c_numer, center->numerators()[i], k + 1);
    c_numer /= center->denominators()[i];
    center->set_entry(i, c_numer, c_denom);
  }
  length_numerator = 1;
  power2(length_denominator, k);
}

rationalVector *
computeConeStabilityCube(listCone *cone, int numOfVars, 
			 ZZ &length_numerator, ZZ &length_denominator)
{
  if (cone->facets == NULL)
    computeDetAndFacetsOfSimplicialCone(cone, numOfVars);
  bool our_simplicial_facets
    = (cone->facet_divisors.length() == numOfVars);
  rationalVector *center;
  if (our_simplicial_facets) {
    // Here we use the order and the properties of the facet vectors
    // that we have computed:
    // < RAY_i, FACET_j > = -FACET_DIVISOR_i * DELTA_{i,j}.
    center = computeConeStabilityCube_simplicial(cone, numOfVars,
						 length_numerator,
						 length_denominator);
  }
  else {
    assert(cone->facet_divisors.length() == 0);
    // In this case, there is no order of the facet vectors,
    // even if the cone happens to be simplicial.
    center = computeConeStabilityCube_general(cone, numOfVars,
					      length_numerator,
					      length_denominator);
  }
  simplifyConeStabilityCube(center, length_numerator, length_denominator,
			    numOfVars);
  return center;
}

static ZZ
lcm(const ZZ& a, const ZZ& b)
{
  return a * ( b / GCD(a, b));
}

int
estimate_barvinok_depth(listCone *cone, int numOfVars)
{
  ZZ det_estimate;
  if (IsZero(cone->determinant)) {
    ZZ max_norm_square;
    listVector *ray;
    for (ray = cone->rays; ray; ray = ray->rest) {
      ZZ norm_square;
      int j;
      for (j = 0; j<numOfVars; j++)
	norm_square += ray->first[j] * ray->first[j];
      if (norm_square > max_norm_square)
	max_norm_square = norm_square;
    }
    det_estimate = power(max_norm_square, (numOfVars + 1) / 2);
  }
  else
    det_estimate = abs(cone->determinant);

  return 1 + (int) ceil(log((double) NumBits(det_estimate))
			/ log(1 + 1.0 / (numOfVars - 1)));
}

void
irrationalizeCone(listCone *cone, int numOfVars)
{
  ZZ center_denominator;
  vec_ZZ center_numerator;
  ZZ stability_length_numerator, stability_length_denominator;
  {
    rationalVector *stability_center
      = computeConeStabilityCube(cone, numOfVars,
				 stability_length_numerator,
				 stability_length_denominator);
    center_numerator =
      scaleRationalVectorToInteger(stability_center, numOfVars,
				   center_denominator);
#ifdef DEBUG_IRRATIONAL
    cerr << "stability center: ";
    printRationalVector(stability_center, numOfVars);
    cerr << "stability length: " << stability_length_numerator
	 << "/" << stability_length_denominator << endl;
#endif
    delete stability_center;
  }
  // The actual irrationalization.
  ZZ M;
  int k;
  // Value from math.CO/0603308 v1 (wrong):
  //M = 2 * power(D, numOfVars + 1);
  // Value from v2:
  {
    int barvinok_depth
      = estimate_barvinok_depth(cone, numOfVars);
#ifdef DEBUG_IRRATIONAL
    cerr << "Estimated tree depth " << barvinok_depth << endl;
#endif
    ZZ C;
    C = 0;
    int i;
    listVector *ray;
    for (ray = cone->rays; ray; ray = ray->rest) {
      for (i = 0; i<numOfVars; i++) {
	if (abs(ray->first[i]) > C)
	  C = abs(ray->first[i]);
      }
    }
    ZZ factorial;
    factorial = 1;
    for (i = 2; i<=numOfVars - 1; i++)
      factorial *= i;
    ZZ d;
    d = numOfVars;
    M = 2 * power(power(d, barvinok_depth) * C,
		  numOfVars - 1);
    // Round up to next power of two
    k = NumBits(M);
    power2(M, k + 1);
  }
  // Now use this value of M to compute the irrationalization.
  vec_ZZ irrationalizer_numerator;
  irrationalizer_numerator.SetLength(numOfVars);
  ZZ irrationalizer_denominator;
//   ZZ TwoM_power;
//   TwoM_power = 1;
  int TwoM_exponent = 0;
  int i;
  for (i = numOfVars-1; i>=0; i--) {
    irrationalizer_numerator[i] = stability_length_numerator << TwoM_exponent;
    TwoM_exponent += (k + 2);
  }
  irrationalizer_denominator = stability_length_denominator << (TwoM_exponent - (k+1) + 1);

  ZZ common_denominator = lcm(center_denominator, irrationalizer_denominator);
  // Store the new vertex
  vec_ZZ new_vertex_numerator;
  new_vertex_numerator.SetLength(numOfVars);
  for (i = 0; i<numOfVars; i++) {
    new_vertex_numerator[i]
      = center_numerator[i] * (common_denominator / center_denominator)
      + irrationalizer_numerator[i] * (common_denominator / irrationalizer_denominator);
  }
  rationalVector *new_vertex = new rationalVector(new_vertex_numerator,
						  common_denominator);
#ifdef DEBUG_IRRATIONAL
  cerr << "--irrationalize--> ";
  printRationalVector(new_vertex, numOfVars);
#endif
  /* Canonicalizing is very expensive and unnecessary */
#if 0
  canonicalizeRationalVector(new_vertex, numOfVars);
#ifdef DEBUG_IRRATIONAL
  cerr << "--canonicalize---> ";
  printRationalVector(new_vertex, numOfVars);
#endif
#endif
  assertConesIntegerEquivalent(cone, cone->vertex->vertex, numOfVars,
			       "cone and cone not integer equivalent");
  assertConesIntegerEquivalent(cone, new_vertex, numOfVars,
			       "Not integer equivalent with new_vertex");
  delete cone->vertex->vertex;
  cone->vertex->vertex = new_vertex;
  assert(isConeIrrational(cone, numOfVars));
}

void
irrationalizeCones(listCone *cones, int numOfVars)
{
  listCone *cone;
  for (cone = cones; cone != NULL; cone=cone->rest)
    irrationalizeCone(cone, numOfVars);
}

bool
isConeIrrational(listCone *cone, int numOfVars)
{
  /* The affine hulls of the proper faces do not contain any integer
     points if and only if the scalar product of the integrally
     scaled, primitive dual basis vectors with the rational vertex is
     non-integral. */
  ZZ vertex_denominator;
  vec_ZZ vertex_numerator
    = scaleRationalVectorToInteger(cone->vertex->vertex, numOfVars,
				   vertex_denominator);
  listVector *facet;
  ZZ rem;
  for (facet = cone->facets; facet; facet = facet->rest) {
    InnerProductModulo(rem, vertex_numerator, facet->first, vertex_denominator);
    if (IsZero(rem))
      return false;
  }
  return true;
}

void
checkConeIrrational(listCone *cone, int numOfVars)
{
#if 1
  if (not isConeIrrational(cone, numOfVars)) {
    static NotIrrationalException notirrational;
    throw notirrational;
  }
#endif
}

void
assertConesIntegerEquivalent(listCone *cone1, rationalVector *new_vertex,
			     int numOfVars, const char *message)
{
  ZZ vertex1_denominator;
  vec_ZZ vertex1_numerator
    = scaleRationalVectorToInteger(cone1->vertex->vertex, numOfVars,
				   vertex1_denominator);
  ZZ vertex2_denominator;
  vec_ZZ vertex2_numerator
    = scaleRationalVectorToInteger(new_vertex, numOfVars,
				   vertex2_denominator);
  ZZ scaled_sp_1, scaled_sp_2;
  ZZ interval_1, interval_2;
  listVector *facet1;
  for (facet1 = cone1->facets; facet1; facet1 = facet1->rest) {
    InnerProduct(scaled_sp_1, vertex1_numerator, facet1->first);
    InnerProduct(scaled_sp_2, vertex2_numerator, facet1->first);
    div(interval_1, scaled_sp_1, vertex1_denominator);
    div(interval_2, scaled_sp_2, vertex2_denominator);
    if (interval_1 != interval_2) {
      cerr << message << endl;
      assert(interval_1 == interval_2);
    }
  }
}